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Abstract 

The pulsed eddy current responses to varying material thickness and conductivity are modeled using an 
electrical circuit ideal transformer non-linear model.  The Levenberg-Marquardt algorithm is used to curve fit the 
experimental signal to the model.  The resulting synthetic signal is examined for its ability to preserve 
experimental signal features such as lift-off point of intersection (LOI), a pulsed eddy current signal feature used 
successfully in NDE of corrosion, cracks, thickness and conductivity measurements.  The method is tested on 
specimens for its ability to reproduce inspection images using synthetic signals in lieu of experimental signals.  
This procedure conserves data storage space and allows rapid analysis of images using equations. 
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1. Introduction 
 

The signal obtained during conventional eddy current testing ranges from simple curves in the 
impedance plane diagram to more complex lemniscates.  The obtained signal depends on the type of 
transducer used, the material under inspection, its discontinuities, and the frequency of excitation.  
There have been many attempts to model conventional eddy current signal patterns using Fourier 
descriptors [1,2,3].  The objective was to characterize the signal patterns with a few parameters so that 
signal storage space could be reduced.  Some issues were (1) the ability to reproduce the original 
signal with high fidelity, (2) using a set of parameters capable of providing an intuitive understanding of 
the physical phenomena, (3) a different and unique set of parameters for different discontinuities, and 
(4) the ability to allow automatic discontinuity recognition [1].  Dodd and Deeds explored the equivalent 
work for pulsed eddy current within a general theoretical framework for polynomial approximation [4,5].  
This multi-parameter polynomial method allowed material property recognition with good accuracy, 
providing the proper points were selected in the experimental signal.  The ability to reproduce the signal 
with minimal data storage and high fidelity was not explored.  The uniqueness of parameters to the 
material condition was also not determined. 

 
In this study, the non-linear response of a single absolute coil transducer is fitted to an electrical 

circuit equivalent model (figure 1.a).  The resulting model is then used to simulate pulsed eddy current 
inspection of simple structures.  The Levenberg-Marquardt (LM) curve-fitting algorithm for non-linear 
models is used [7,8].  The quality of the curve fitting is verified by means of visual observation and 
residuals comparison of the experimental curve to the synthetic curve generated using the parameters.  
The parameters’ stability to small changes in the data due to noise is tested using a bootstrap 
algorithm.  The model’s ability to reproduce with high fidelity the experimental signal is further tested by 
comparing the lift-off point of intersection (LOI) obtained experimentally and synthetically under various 
test conditions.  It is a requirement of this work that the LOI be retained as it is a pulsed eddy current 
feature used for evaluation of corrosion, for cracks, and for multi-layer structures inspection [6]. The 
method is lastly verified by comparing a test article image constructed with experimental signals to that 
of an image constructed with synthetic data. 
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(1.a)       (1.b) 

 
Figure 1. Circuit equivalent model.  (1.a) The transducer is represented by a resistance (R1) and an inductance 
(L1).  It is coupled by a mutual inductance (M12) to the specimen represented by a resistance (R2) and an 
inductance (L2).  (1.b)  Signal when exposed to air (full line) and signal when exposed to a conductor (dotted line). 
 
2. Non-linear curve fitting algorithm 
 

A recognized non-linear least-square fitting method is the LM algorithm [7].  This algorithm uses 
information in the gradient and Hessian matrices to find an approximate distance and direction to the 
nearest minimum from the starting values [8].  The LM algorithm requires (i) a model, represented by 
an equation with n parameters, to which to fit the experimental data, (ii) the n  partial derivatives with 
respect to the n  parameters, and (iii) adequate initial guess values.  This provides a problem with n+1 
equations to find n parameters. 
 
2.1 Circuit equivalent model.  A circuit equivalent model commonly used to represent the physical 
eddy current test is the ideal transformer [9].  It provides a first order approximation capable of 
describing the signal response behaviour.  Figure (1.a) represents the ideal case under a pulsed 
excitation, V(t).  A resistance (R1) in series with an inductance (L1) represents a single coil transducer 
electrical properties. A resistance (R2) in series with an inductance (L2) represents the specimen’s 
electrical properties.  The transducer and the specimen are coupled by the mutual inductance (M12) a 
function of the coupling factor (k).  Under this arrangement the current in the transducer, i1(t), will vary 
with varying test article conditions.  A set of coupled differential equations (1) represents this situation. 
If the transducer is exposed to air (a non-conductor) equation (1) is simplified by equating R2, L2, and 
M12 to zero.  The solutions to equations (1) when the transducer is exposed to air or a conductor can be 
solved using Laplace transforms, the solutions of which are widely available in literature [10]. 
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In the case of the transducer in air, the solution for the current in the transducer has the form given 

by equation (2).  In the case of the transducer near a conductor, the solution for the current in the 
transducer has the form given by equation (3).  Given that the current in the transducer is measured 
indirectly as a voltage across a resistance, or as a voltage through a voltage-follower, and that the 
entire test set-up electrical properties are not taken into account, the precise formulations in term of 
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resistance and inductance for the parameters A, a, B, b, C, c or D are not of interest.  Only the general 
shape of the equations and number of parameters in (2) and (3) are of interest. 
 

atAeAte −=)( , t
Atea )/)(1ln( −= .    (2) 
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2.2 Associated differential equations.  Differentiating equations (3), with respect to the parameters, 
for the case of the transducer exposed to a conductor provides equations (4).  Equations (3) and (4) 
form the complete set of equations required by the LM algorithm. 
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2.3 Initial guess values.  With the LM algorithm, choosing adequate initial guess values is a crucial 
constraint.  The starting parameter values need to be as close as possible to final parameters values in 
order to avoid being trapped in a local minimum or not converging to a solution.  This is especially 
critical when the number of parameters to be fitted is high [7,8].  In this study, two sets of initial guess 
values are provided.  The first set of initial guess values is provided by using the parameters A and a of 
the transducer signal in air.  The subsequent sets of initial guess values are provided using the 
parameters B, b, C, c and D found in a previous curve fitting of the transducer response when exposed 
to the test article.  The rational for this is as follows.  It is observed experimentally that the transducer’s 
response when exposed to air is very similar to that of a transducer exposed to a conductive test article 
(figure 1.b).  Yet, equation (2) representing the air exposure situation is relatively simple and its 
parameters A and a can be easily estimated.  Parameter A is estimated as the mean steady state value 
of the signal.  Once parameter A is available, equation (2) can be linearized and the value of parameter 
a is found by least-square approximation.  The value estimated for A as amplitude is then used as the 
first initial guess for B, C, and D amplitudes.  The value of the exponent a is used for the exponents b 
and c as the first initial guess values in the LM algorithm.  The second stage for providing close initial 
guess values involves simply using the parameters B, b, C, c, and D from a previous curve fitting.  The 
reason for this being that the parameters found from the previous curve fitting process would always be 
very close to the new parameters.  This allows automatic and rapid curve fitting for a C-scanned 
specimen.  The curve fitting process described above was tried using previously published results with 
a single coil probe [6].  Sets of titanium (3.5 percent of International Annealed Copper Standard, 
%IACS), brass (26.5 %IACS), aluminum (59.5 %IACS) and copper (100.1 %IACS) shims and plates of 
various thickness were used to provide a wide spectrum of thickness and conductivity effects on the 
probe’s response.  Conductivity standards (1, 3, 9, 29, 32, 38, 42, 48, 59, 87 and 100 %IACS) were 
also used to evaluate the effect of conductivity only.  The response at design lift-off and three different 
applied lift-offs were recorded for all test conditions.   This experiment provided approximately 130 
single coil transducer responses to test the curve fitting process.    
 
3. Results 
 
3.1 Visual and Residuals.  A typical direct visual comparison of the experimental responses and the 
synthetically generated curves is shown in figure 2.a.  Both curves overlap with excellent fit.  However, 
important, yet minute, differences can still be present but hidden by the scale used.  By showing the 
difference between the experimental and synthetic curves in relative percentage terms, these minute 
differences are enhanced.  The relative residuals for the typical curves are shown in figure 3.b.  The 
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relative difference between the experimental curve and the synthetic curve did not exceed 0.3% in most 
regions of the curve.  The exceptions always being relatively large discrepancies during the first 2 to 3 
µs that represent about 4% of the recorded response.  This is discussed later in section 3.5.  Overall, 
the fit between experimental and synthetic curves proved to be excellent. 
 

 
 
 
 
 
 
 
 
 
 
 
 

(2.a)       (2.b) 
     
Figure 2.  Typical curve fitting results.  (2.a) Overlapping experimental and synthetic curves, (2.b) relative 
difference between experimental and synthetic curves. 
 
3.2 Stability.  One issue of concern is the stability of the parameters under varying noise.  If small 
changes in noise induce high variations in parameter values then the parameters may not be 
reproducible and pattern recognition impossible.  To test the parameter stability, it was decided to use a 
bootstrap algorithm to generate synthetic sets of data from which new synthetic parameters would be 
obtained [7].  The bootstrap was performed 20 times to obtain a mean parameter and a standard 
deviation.  The curve fitting process was deemed stable if (i) the bootstrap standard deviation was 
within ± 5% of the mean bootstrap parameter found and if (ii) the mean bootstrap parameter agreed 
within  ± 5% of the original curve fitting parameters found.  All parameters were compared against 
these two criteria.  Adherence to the first criterion was evaluated by taking the ratio of the bootstrap 
standard deviation to its bootstrap mean parameter.  Adherence to the second criterion was evaluated 
using the ratio of the original curve fitting parameter value to the bootstrap parameter value.  This was 
repeated for all parameters and for all signals that were curve fitted.  To ease the evaluation, all ratios 
obtained were plotted in figure 3, where the semi-circle represents the ± 5% criteria.  It is to be noted 
that most points fall in a small cluster well inside the semi-cercle.  With a few exceptions, the curve 
fitting process proved to be very stable showing only small variations in the parameter values when 
subjected to varying noise.  This is indicative of a very stable curve fitting process.  Again exceptions 
are observed and are explained in section 3.5. 
 
 
 
 
 
 
 
 
 
 
 
 

-10
-8
-6
-4
-2
0
2

0 20 40 60 80

Time (µs)

R
el

at
iv

e 
D

iff
er

en
ce

 (%
)

Relative Error

-0.100

-0.075

-0.050

-0.025

0.000
0.90 0.95 1.00 1.05 1.10

Ratio of Parameters

R
at

io
 o

f S
ta

nd
ar

d 
D

ev
ia

tio
n

0.0

0.5

1.0

1.5

0 20 40 60 80

Time (µs)

A
m

pl
itu

de
 (V

)

Experimental
Synthetic

Figure 3. Parameter 
Stability 

Proc. Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials
Québec City (Canada),2-4 Aug. 2005. © X. Maldague ed., É. du CAO (2006),  ISBN 2-9809199-0-X 



  

 73

3.3 LOI feature.  The LOI is a feature used to provide an evaluation independent of lift-off in pulse 
eddy current.  Therefore, it is very important to preserve it in the curve fitting process.  Figure 4.a shows 
two typical experimental signals taken at different lift-offs but identical test article condition.  Their 
synthetic curves are also shown.  It can be seen intuitively from figure 4.a, that the LOI feature is 
preserved in that all four signals cross each other at the same location.  This can be amplified by 
subtracting the experimental signals one from another and likewise for the synthetic curves.  Figure 4.b 
shows that the differences provide the same zero amplitude crossing time near 22 µs.  The ability of the 
curve fitting process to preserve the LOI time-amplitude coordinates was verified for all test conditions 
and good agreement was obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4.a)       (4.b) 
 
Figure 4.  LOI feature preservation.  (4.a)  close-up view of two experimental signals with varying lift-off only, (4.b) 
close-up view of the difference between the two signal showing that experimental and synthetic curve subtraction 
provide the same LOI time. 
 
3.4 Imaging.  The curve fitting process was also used tested by comparing an experimental image 
and a synthetic image.  The data was obtained by scanning a 1.025 mm thick aluminum specimen with 
a 10 mm radius circularly-shaped bottom side material loss of 35%.  The top surface was covered with 
varying layers of non-conducting tape to simulate varying lift-off effects of 0 mm, 0.115 mm and 0.230 
mm.  The experimental and synthetic amplitudes results at LOI time are shown side by side in figure 5.   
It can be seen that there is no loss of information from the synthetic data. 
 
3.5 Limitations.  In sections 3.1, 3.2 and 3.3 exceptions to the general good fit of the process used 
here were noted.  For all signals, the first 2 to 3 µs showed some discrepancy between the 
experimental data and the synthetic curve.  The problem may be due to an impedance mismatch and 
ringing or the trigger delay between the start of the signal recording and the pulse generation not being 
fully accounted for.  However the early discrepancy did not affect the overall results.  The parameter 
stability and LOI feature preservation also showed some problem areas.  Under close examination, the 
exceptions to the stability and LOI feature preservation were confined to a few samples.  It was noticed 
that for very thin samples or not so thin very low conductivity samples, the experimental signal varied 
little with varying lift-off or even from the transducer response when exposed to air.  Furthermore, noise 
levels prevented differentiation of some test article variations.  For those specimens, the transducer 
was operating at or beyond its own limitations.  Under those circumstances, the curve fitting process 
still provided an overall good fit but the parameters became unstable. 
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(5.a)      (5.b) 
 
Figure 5:  Image reconstruction.  The experimental image (5.a) information is preserved in the synthetic image 
(5.b). 
 
4. Conclusion and future work 
 
 A simple process to curve-fit pulsed eddy current signals using the Levenberg-Marquardt algorithm 
and the ideal transformer model was presented here.  The process is capable of providing an excellent 
fit between experimental and synthetic curves.  The curve fitting process is shown to provide stable 
parameters under noise variation.  It has also the ability to preserve key signal features such as the LOI 
time-amplitude coordinates and the LOI behaviour.  The curve fitting process is, however, limited to the 
operating regime of the transducer.  Future work will consist of adapting and testing the curve fitting 
process with other models of transducer.  The synthetic results will also be explored to extract more 
information from the signal. 
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Abstract 

Corrosion has an important effect on the structural integrity of aging aircraft 
components, and an automatic and effective method of corrosion detection and 
classification can help to ensure the safe operation of a transportation system. 
Pulsed eddy current (PEC) has been shown to effectively characterize hidden 
corrosion in aircraft fuselage lap joints. However, two noise sources in the form 
of probe lift-off and interlayer gap can cause false indications or inaccuracies in 
quantification. 

This paper describes the development of a modular architecture for analysis of 
PEC data to enable automatic characterization of hidden corrosion in a typical 
aircraft fuselage multi-layer structure. The goal of this study was to develop a 
software tool to detect and distinguish between first layer and second layer 
corrosion damage. 

This investigation is a follow on to previous work that applied time-frequency 
analysis of PEC signals to provide specific visual patterns related to the interlayer 
gap, lift-off, and material loss. In the present work, the authors have investigated 
the time-frequency analysis of PEC signals along with feature extraction and 
classification to automatically characterize and determine the location of material 
loss in a two-layer structure. 

 

1. Introduction: 
Recent advances in the pulsed eddy current technique have shown the potential to 
detect and characterise hidden corrosion in multi-layer aircraft structures such as 
lap splices [1,2]. 

In PEC, the probe’s driving coil is excited by repeated pulses. For every pulse, the 
response signal is measured with a sensor, which may be the driving coil, another 

Proc. Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials
Québec City (Canada),2-4 Aug. 2005. © X. Maldague ed., É. du CAO (2006),  ISBN 2-9809199-0-X 



 76

coil, or a Hall or GMR sensor. By sampling the time-domain response using a 
high-speed digitiser, the probe response is effectively captured over a wide range 
of frequencies within a single measurement. This allows inspection of the entire 
depth of the specimen with just one pulse. 

The most common features used in the analysis of PEC signals for detection and 
characterization of material loss due to corrosion in multi-layer structures are the 
amplitude, time-to-peak or time-to zero-crossing. However, these features are not 
sufficient for discriminating signals due to corrosion –induced metal loss from 
unwanted noise. Two of the most important noise sources in lap joint inspections 
are the variation in probe lift-off and interlayer gap due to change in paint or 
adhesive thickness, and corrosion pillowing. Previous work of the authors [3] has 
shown that the time-frequency analysis of pulsed eddy current signals provides 
visual discrimination between the simultaneous occurrence of material loss and 
changes in interlayer gap or lift-off. However, this method cannot currently be 
readily used because of difficulties in calibration and the lack of an automatic 
detection and classification system. 

This paper presents an automated pulsed eddy current method capable of 
detecting and classifying the material loss due to corrosion, and determining its 
location in a two-layer structure.  
 

2. Principal of method: 
Conventional pulsed eddy current techniques for corrosion detection and 
characterization rely on the analysis of signal features that are represented as c-
scan images. Only experienced operators are able to perform full evaluation of 
pulsed eddy current c-scan images. Increasing emphasis on reliability and demand 
for tools that can assist operators have motivated research for an automated pulsed 
eddy current detection and classification system. 

The automatic pulsed eddy current detection and classification system developed 
in this work includes three modules: a time-frequency analysis module, feature 
extraction module, and classification module; as shown in Figure 1.  

 

 
Figure 1: Modular architecture for the proposed pulsed eddy current system. 

 
Details about each module are described in the following. 
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2.1. Time-Frequency Module 
Time-frequency analysis provides a three-dimensional representation of signals in 
time-frequency-amplitude space, but usually, the projection of this three-
dimensional representation is shown in the two-dimensional time-frequency plane 
with grey scale representing the amplitude.  

There are several possible time-frequency distributions; however, we will focus 
only on the Wigner-Ville distribution (WVD) that is most commonly used. 

The Wigner-Ville distribution of a signal )(ts  is defined as [4]: 

∫
∞

∞−

−∗ −+= τττω ωτ detststWVD j
s )2/()2/(),(    (1) 

where )(ts  is a continuous complex signal, τ  is a time shift variable and the 
asterisk denotes the complex conjugation. The discrete-time and discrete-
frequency version of equation (1) is given by [5]: 
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where )(kp is the window function such as Hamming, Hanning, or rectangle with 
the length M centred about n . 

The WVD has a number of desirable mathematical properties such as time and 
frequency marginal conditions, instantaneous frequency, time shift, frequency 
shift, and time and frequency support properties. Despite the desirable properties 
of the WVD, it has two major draw-backs:  it is not necessarily non-negative and 
it is a bilinear function producing interferences or cross terms for multi-
component signals. In practical applications, the WVD requires some smoothing 
in order to suppress the cross terms. 

 

2.2. Feature Extraction Module 
Feature extraction is crucial for pattern recognition systems. The number of 
features determines the measurement cost and a well-defined feature set plays an 
important role in the accuracy and efficiency of the subsequent processing.  

The output of the time-frequency analysis module is the WVD representation of 
the pulsed eddy current signals, which are images with a large amount of 
redundant information. To improve computational efficiency, it is vital to reduce 
the number of parameters (inputs) in the classifier. Two different feature 
extractors are used and compared in this study.  
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One well known linear feature extractor is principal component analysis (PCA) 
[6]. PCA is a method of identifying patterns in data (the time-frequency images of 
the PEC signals in our case), and expressing the data in such a way as to highlight 
their similarities and differences.  

PCA computes the m  largest eigenvectors of the dd ×  covariance matrix of the 
dn× -dimensional patterns. The linear transformation is defined as: 

 

HXY =      (3) 

where X is the given dn×  pattern matrix, Y is the derived mn×  )( dm <  pattern 
matrix, and H is the md ×  matrix of linear transformation whose columns are the 
eigenvectors. Since PCA only retains the most expressive features (eigenvectors 
with the largest eigenvalues), it effectively reduces the number of dimensions 
without much loss of information. 

Let each WVD image be a NN ×  matrix. This matrix can be expressed as a 2N -
dimensional vector where the rows of pixels in the image are placed one after the 
other to form a one-dimensional image. 

 
)( 2111211 NNN wwwwwWVD KK=    (4) 

The values in the vector are the intensity values of the image, possibly a single 
greyscale value. All the WVD image vectors are then put in one matrix: 
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which gives us a starting point for our PCA analysis. Since all the vectors are 2N  
dimensional, we will get 2N  eigenvectors. Once we have performed PCA, we 
obtain the original data mapped into the axis corresponding to the eigenvectors. In 
practice, we are able to leave out some less significant eigenvectors. In our case, 
two eigenvectors that correspond to the two largest eigenvalues are chosen for 
investigation. This choice of eigenvectors permits a visual examination of the 
data. 

Another feature extractor which has been examined is the moments in time and 
frequency of a time-frequency representation. Since the time-frequency image 
describes the evolution with time of the frequency content of the signal, the 
extraction of information has to be done with care from the knowledge of these 
properties. The first order moments of a Wigner-Ville distribution in time and in 
frequency are defined as: 
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Equation 6 describes the averaged position and spread in time and frequency of 
the signal. For a Wigner-Ville distribution, the first order moment in time also 
corresponds to the instantaneous frequency, and the first order moment in 
frequency to the group delay of the signal. In this study, the first key feature is 

0=t
ω  and the second one is

0=ω
t . 

The output from the feature extraction module is an optimal set of features 
extracted from WVD images that are then fed to the classification module. 

 

2.3. Classification Module 
The role of the classification module is to classify or describe observations relying 
on the extracted features. The classification scheme is usually based on the 
availability of a set of patterns that have already been classified or described. This 
set of patterns is termed the training set and the resulting learning strategy is 
characterised as supervised. Learning can also be unsupervised, in the sense that 
the system is not given a priori labelling of patterns, instead it establishes the 
classes itself based on the statistical regularities of the patterns.  

The classification scheme usually uses one of the following approaches: template, 
statistical (or decision theoretic), syntactic (or structural), or neural. In template 
matching, a template or a prototype of the pattern to be recognized is available. 
Statistical pattern recognition is based on statistical characterisations of patterns, 
assuming that the patterns are generated by a probabilistic system. Structural 
pattern recognition is based on the structural interrelationships of features. Neural 
pattern recognition employs the neural computing paradigm that has emerged 
with neural networks.  
In our case, a Fisher’s linear discriminant is implemented to take care of the last 
processing step that consists of decision making regarding the defect class. This 
classifier minimizes the mean squared error (MSE) between the classifier output 
and the desired labels. It projects high dimensional data onto a line and performs 
classification in this one-dimensional space. The projection maximizes the 
distance between the means of the two classes while minimizing the variance 
within each class. Details about this classifier and other classifiers can be found in 
[7]. 

 

(6) 
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3. Experiments: 
The PEC instrumentation used for this work consisted of a pulse generator, a pre-
amplifier, an XY positioning robot and a computer-controlled data acquisition 
system. A schematic of this setup is shown in Figure 2. The driver coil is excited 
with a 12 volt, 500 sµ  long step function triggered upon the probe’s arrival at a 
point of acquisition. The signal is measured as a time-based voltage drop across a 
resistor in series with the pick-up coil, and fed into a low-noise amplifier.  This 
signal response in the time domain is often called an A-scan.  The scanning and 
data acquisition operations are controlled by the Utex Winspect™ software 
package. Although the system can accommodate several probe-coil 
configurations, only the sliding probe arrangement was used in this study. The 
probe consists of two adjacent coils in driver/pickup configuration.  

Figure 2: A schematic illustration of the PEC apparatus used in this study. 
 
A test specimen was constructed to simulate a two-layer 0.040”/0.040” aluminium 
alloy lap splice, as shown in Figure 3. Material loss due to corrosion was 
simulated by milled areas.  

The specimen was scanned at a 1 mm resolution. The signals in each region of 
interest were captured with 1 MHz sampling frequency. It is the reference 
subtracted signal, rather than the raw signal, that is analysed when evaluating the 
condition of the lap splice. The reference signal was taken as the average of all A-
scan signals in the region away from flaws. Subsequently, the reference signal 
was subtracted from those of interest, resulting in a set of reference subtracted 
signals. These represent the perturbations due to metal loss or other abnormal 
conditions. Hence forth, these signals will be referred as simple PEC signals. 

 

 

 

  

pulse generator   

probe adapter  
circuit box  

low noise amplifier  

PC based 16 - bit digitizer  

computer monitor  

eddy current probe   

spe cimen on scanning table  

trigger  

step function    
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Figure 3: The configuration of the test specimen used in this study. 

 

4. Results and Discussion: 
The subtracted defect signatures are fed to the Wigner-Ville Distribution (WVD) 
computer block to obtain the corresponding WVD images. These WVD images 
are presented to the feature extractor block for optimal feature extraction. Both 
feature extractors explained in section 2.2 (PCA and the first order moments of 
WVD) have been applied to the WVD images and the key features obtained from 
each extractor have been sent to the classifier separately. 

Six different defect classes are considered to test the performance of the proposed 
method. There are three categories for the location of defects: bottom of top layer 
(BOT), top of bottom layer (TOB) and bottom of bottom layer (BOB). Each 
category is divided in two classes: defect with less than 10% of the layer thickness 
and defect with more than 10% of the layer thickness. The extracted features 
corresponding to the six simulated defect signatures are fed to the classifier for 
training. Every training input data is labelled with its corresponding class as 
indicated in Table 1. 

 
Table 1: List of defect classes and training data set 

Defect Class Training Data 
BOT <10% bot 2.5%  &  bot  7.5% 
BOT >10% bot 17.5%  &  bot 25% 
TOB <10% tob 7.5%  &  tob 10% 
TOB >10% tob 17.5%  &  tob 27.5% 
BOB <10% bob 5%  &  bob 6.25% 
BOB >10% bob 20%  &  bob 30% 
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Al alloy plates Fasteners 

Milled area on the 
bottom of bottom layer 

23.75   

6.25   

20   

20   20   

30   

22.5   

21.25   

6.25   5   

17.5   

30   

7.5  

22.5  

20  

20  

10  

27.5  

20  

17.5  

10  

27.5  

17.5  

7.5  

2.5  

19  

12.5  

14  

22.5  

17.5  

15  

7.3   

25   

17.5   

3.75   

the top of bottom layer the bottom of top layer 

25 inch 

10 inch 
M

at
er

ia
l l

os
s 

(%
 p

la
te

 th
ic

kn
es

s)
 6.25

Proc. Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials
Québec City (Canada),2-4 Aug. 2005. © X. Maldague ed., É. du CAO (2006),  ISBN 2-9809199-0-X 



 82

The classifier uses these training data to provide the decision boundary. Then, the 
trained classifier assigns the test data to one of the classes under consideration 
based on the measured features. Since two different feature extractors were used, 
the classification process was performed for each of them separately.  To get a 
better sense of the results, the defect classes determined by the classifier for each 
test data are shown in Figure 4. 

 
Figure 4: Estimated material loss by classifier using (a) PCA and (b) the 

first moment of WVD as a feature extractor 
 

Table 2 summarizes the defect classes, the actual material loss and the evaluation 
for each test data. 

 
Table 2: Comparing actual material losses with  

defect classes obtained by classifier 
Actual 

Material Loss 
Defect Class
(using PCA) 

Evaluation 
(using PCA) 

Defect Class 
(using MOM) 

Evaluation 
(using MOM) 

BOT 3.75% BOT > 10% False BOT > 10% False 
BOT 6.25% BOT < 10% True BOT < 10% True 
BOT 12.5% TOB <10% False TOB <10% False 
BOT 14% BOT >10% True BOT >10% True 
BOT 15% BOT >10% True BOT >10% True 

A 
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BOT 17.5% BOT > 10% True TOB > 10% False 
BOT 19% BOT > 10% True BOT > 10% True 

BOT 22.5% BOT > 10% True BOT > 10% True 
TOB 7.5% TOB < 10% True TOB < 10% True 
TOB 10% BOB < 10% False BOB < 10% False 

TOB 17.5% BOT > 10% False TOB > 10% True 
TOB 20% TOB > 10% True TOB > 10% True 
TOB 20% TOB > 10% True TOB > 10% True 
TOB 20% BOT > 10% False BOT < 10% False 

TOB 22.5% TOB > 10% True TOB > 10% True 
TOB 27.5% TOB > 10% True TOB > 10% True 
BOB 6.25% BOB < 10% True BOB < 10% True 
BOB 17.5% BOB < 10% False BOB > 10% True 
BOB 20% BOB >10% True TOB > 10% False 
BOB 20% BOB < 10% False BOB < 10% False 

BOB 21.25% BOB > 10% True BOB > 10% True 
BOB 22.5% BOB > 10% True BOB > 10% True 
BOB 23.75% BOB > 10% True BOB > 10% True 

BOB 30% BOB > 10% True BOB > 10% True 
 

It is clear from Table 2 that in most cases the classifier gives a correct response 
except when the material loss size is very close to the limit of the class such as 10 
or 12.5% material loss. In some cases, the training data do not well represent the 
classes and are far from the limit of the class. In such a case, the classifier cannot 
accurately define the boundary of classes. 

On the other hand, the results from the two feature extractors used in this study 
give the same number of false responses. It is very difficult to arrive at a 
conclusion regarding the performance of these two feature extractors.  

There are some error sources that must be addressed. The extractor block only 
provided two features for each WVD image to permit a visual examination of the 
data. The PCA analysis can extract more features to better represent the WVD 
images. In case of the first order moment of WVD, the extraction of the second 
order moment of WVD can also be interesting to consider because it contains 
some additional information about the given time-frequency representation. In 
other words, the loss of information brought on by the PCA analysis or the 
moment of WVD can be kept at a minimum. 

The number of training samples plays an important role in the classification 
performance. In practice, the error rate of a recognition system is a function of the 
number of training and test samples. The error rate becomes smaller and smaller 
as the ratio of the number of training samples per class to the dimensionality of 
the feature vector gets larger and larger. In this case, there were only two data per 
class for training the classifier. Despite the small number of training data, the 
results were good. A large number of training data can significantly improve the 
performance of the classifier. It is also noted that the classifier approach adopted 
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in the classification block is the simplest classifier. Using a nonlinear classifier or 
a neural network classifier may better define the decision boundaries and 
consequently reduce the error, but they are very sensitive to the number of 
training data. 

 

5. Conclusion: 
In this paper, an automated detection and classification system based on the 
pulsed eddy current measurements for automatic characterization of material loss 
in a typical aircraft fuselage multi-layer structure has been developed. The 
application of joint time-frequency analysis and pattern recognition to pulsed 
eddy current signals provides an automatic defect classification system and 
expands the role of the pulsed eddy current technique in the characterization of 
hidden corrosion in multi-layer lap splice specimens. 
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ABSTRACT 

Fatigue cracks growing rate in an aircraft skin structures is difficult to predict, therefore early detection is very 
important to avoid structure failure. Small fatigue cracks originating deep in these structures, or in the second 
layer of the skin and in the region of the fastener holes, are hard to detect using standard driver-pickup eddy 
current probes. The difficulty lies in the fastener length and spacing, which reduce test sensitivity. This paper 
explains the development of array eddy current probe and signal interpretation technique designed to detect and 
visualize fatigue cracks in fasteners holes and at multilayer level. 
In this study, an array eddy current probe was evaluated and a new eddy current array coil design is suggested. 
Several tests were conducted with the developed array on an aircraft lap-joint sample having simulated fatigue 
cracks. With the improved array design, the results show great potential and enhanced detection capabilities of 
relatively small size fatigue cracks in fasteners. 
 
1) INTRODUCTION 

Airframe manufacturers and airline companies use nondestructive techniques such as eddy current 
to detect hidden fatigue cracks and skin structure corrosion. With conventional eddy current technique, 
the basic component is a sensor coil. When the coil is excited by an alternating current and put on or 
near a conductive material, a resultant eddy current is created on the skin of the material. After the coil 
passes over a defect, the impedance of the coil will change and this impedance variation is directly 
illustrated on the screen in a view called the impedance plane (Lissajous). However, such interpretation 
is not simple task and requires a considerable amount of operator skill and knowledge. A good way to 
facilitate the interpretation of eddy current signals is to present them in a C-scan view. This kind of 
representation is made possible with the use of eddy current array (ECA) probes. Furthermore, with the 
use of ECA probes, a C-scan view can be built with one single of scan, which reduces inspection time 
tremendously. This paper presents a new ECA probe designed for the detection of deep fatigue cracks 
which are immediately adjacent to fasteners in relatively thin and multilayered structures. 
 
2) ECA PROBE PRESENTATION 

The designed ECA probe represents a transmitter-receiver probe that provides a quick and reliable 
solution for the detection of fatigue cracks in lap joint structures. 
 

2.1 Transmitter 
The investigated ECA probe was first designed and modeled using commercial finite element 

software (MagNet from Infolytica) to analyze and optimize the probe. 
 
 

 
(A)     (B) 
Figure 1: Transmitter coil modeling results 
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Figure 1 (A) shows the general appearance of the probe transmitter and figure 1 (B) shows the 
magnetic field distribution produced by the coil.  Measurements were made to quantify the produced 
magnetic field. Such probe configuration provides a powerful transmitter allowing a large magnetic field 
generation in the inspected material. 
 
2.2 Receiver 

The following figure illustrates the configuration of the designed eddy current array probe receiver. 
The probe is used with an ECA unit (OmniScan), which has an internal multiplexer that activates four 
pick-up coils at the time. The receiving configuration is composed of 16 coils. Four coils are activated in 
four acquisition time intervals (or time slots) to activate the complete probe in a very short period of time. 

        
Figure 2: Receiving coil multiplexing 

 
This multiplexing technique provides a large coverage in a single inspection pass while maintaining 

high scanning resolution. Also, it reduces the need for complex robotics to move the probe; a simple 
manual scan is often enough when using ECA. R/D Tech (Olympus NDT Canada) was the first NDT 
instrument manufacturer to use this revolutionary multiplexing technique. 
 
3) SIGNAL INTERPRETAION 

This section describes the signals that are produced when the eddy current probe passes over a 
defect. Figure 3 shows how a C-scan image can be built when an ECA probe passes over a defect. In 
this case, the coil located just over the flaw produces a strong signal. The further the coil is from the 
defect, the weaker is the produced the signal. The C-scan view is color coded to represent the 
amplitude of the close and far coil signals. 
 

 
Figure 3: ECA probe C-scan representation 

The same principle is used in the inspection of a fastener. When the probe passes over a fastener 
free of defects, we obtain a signal in the impedance plane as shown on the left of Figure 4. In order to 
facilitate the interpretation, the signal is rotated until it reaches a horizontal position. 
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Figure 4: Fastener signal processing 

 
This rotation makes it easy to set an alarm threshold on the Y-axis, which is usually the component 

affected by a defective fastener (see Figure 5). 
 

 
Figure 5: Defect detection signal interpretation 

 
When the probe passes over a fastener with a crack, the signal crosses the alarm threshold and the 

C-scan of the Y-axis clearly shows the defect. Figure 6 presents the strip chart and C-scan 
representation of that Y-axis (the X-axis is not used at this moment). 
 

 
Figure 6: Y-axis strip chart and C-san signal representation 

 
Each line forming the C-scan represents the measured signal of each receiving coil. It is possible to 

obtain a smoother C-scan if we use an interpolation processing between each received line. 
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4) EXPERIMENTAL EQUIPMENT SETUP 
The experimental equipment needed for this demonstration is shown in Figure 7. This is a setup 

built around the user-friendly equipment produced by R/D Tech. The equipment includes the ECA 
OmniScan unit and software, an ECA probe prototype, and a small position encoder. 

          
Figure 7: Experimental equipment 

 
5) APPLICATION RESULTS 
5.1 First experimentation 

The first simulated specimen is aluminum machined three-layer thick lap-joint structure. The cracks 
are located in the third layer of the structure (each layer is 2 mm thick). It is important to mention that 
such sample configuration represents a considerable thick structure for the eddy current technique. As 
a matter of fact, the crack is located under 4 mm of aluminum plates. 
 

 
Figure 8: Experimentation 1 configuration 

 

 
Figure 9: Experimentation 1 C-scan results, frequency of 1 kHz 

Scanning with the designed ECA probe, figure 9 shows that we were able to cracks down to 0.100” 
(2.5-mm) located in the third layer of the simulated lap-joint structure. Another important point is that the 
ECA probe had very low sensitivity to lift-off. 
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5.2 Second experimentation 
The second application is a machined, three-layer thick lap-joint sample like the first one, but the 

defects were located in different layers of the structure. Each layer is 1 mm thick. 
 

 
Figure 10: Experimentation 2 configuration 

 

 
Figure 11: Experimentation 2 results, frequency of 2 kHz 

 
This above results (figure 11) demonstrates that we have been able to detect cracks in the third 

layer as small as 0.063” (1.6-mm). This setup also allows the detection of defects located in different 
layers of the structure without any false calls. 
 
5.3 Third experimentation 
Figure 12 shows the sample configuration with the different location of the cracks. 
 

 
Figure 12: Experimentation 3 configuration 

 
Normally, the fastest way to inspect the plate would be to move the ECA probe along the fastener 

line. However, since the designed probe has a better sensitivity to the type of cracks oriented along the 
scanning axis, scanning along the fastener is not really recommended for defects with orientation 
between 5 and 7 o’clock such the above sample. With such defects, a perpendicular scan or an 
oriented 45 degrees scan of the fastener line would provide much better results. The following section 
shows the results obtained for different scan orientations. 
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Figure 13: Parallel scan, very weak detection (because of crack orientation) 

 
 

With the probe moving parallel to the fastener line, it is very difficult to adjust the C-scan color 
palette to obtain good detection of the cracks. Figure 13 shows two small indications that correlate with 
the plate defects. However, the signal amplitude that we get from those defects is relatively small and 
could easily be confused with a good fastener. With this type of parallel scan, the minimum detectable 
flaw would vary between 0.160”-0.180”. 
 
 

 
(A)      (B) 
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Edge 
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(C)      (D) 

Figure 14: Experimentation 3 Results: frequency of 1.5 kHz –A) Response of good fastener - B) Response for 
defective fastener with crack at 6 o’clock – C) Response for crack located at 8 o’clock – D) Response for crack 

located at 8 o’clock (good scan orientation) 
 

When the scan is made perpendicular, the signal response to a crack located around 6 o’clock 
becomes much stronger. Figure 13 (A) and 13 (B) shows the results from two scans, one made on 
good fasteners and one made on fasteners with cracks. When the crack is located at 8 o’clock like in 
the Figure 13 (C), the defective fasteners are more difficult to detect. They can still be detected but the 
difference with a good fastener response is very small. 
 

Figure 13 (D) shows the scan result for a 45-degree orientation. This type of scan is clearly 
optimized for defect around 7 and 8 o’clock. The first fastener gives a big signal represented as a 
deviation in the positive plane of the impedance plane and as an important color change in the C-scan. 
 

To conclude with this third experimentation, the new ECA probe design was able to detect all the 
fatigue cracks located in the second layer of the simulated lap-joint samples. However, this probe has 
some limitations: 

• A parallel scan can provide very fast scan but the detection level is expected to be more 
around 0.160” to 0.180”. 

• Optimum response is obtained when the probe is scanned in the same orientation as the 
defect. In this case, a crack as small as 0.125 in. can be detected. To cover all direction 
at this level of sensitivity, a total of four scans are required. 

 
6) FUTURE WORKS 

Based on these results, it is possible to confirm that the ECA probe design can be successfully 
used for fatigue crack detection. However, to be able to obtain a better detection capability, some future 
work is required: 

• Improve the resolution of the probe 
• Add real-time calculation of the signal surface inside the impedance plane 
• Using modeling for optimization 
• Characterize defects and identify their depth using multi-frequency inspection 

 
 

Very weak 
detection 

(because of 
the cracks 

orientation) 
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7) CONCLUSION 
 

In this paper, an ECA probe and practical inspection procedure were demonstrated for fatigue crack 
detection in multilayered lap-joint structures. The prototype probe showed better detection capabilities 
compared to the standard ECA probe for crack detection presently on the market. We have 
demonstrated a very good detection level with a uniform sensitivity on both sides of the fastener. The 
next steps are: make a standard probe of this prototype and characterize the detection capability with 
regard to the crack orientation. 
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