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Abstract 

 
The Dempster-Shafer (DS) theory provides an efficient framework to implement multi-sensor 
data fusion. Both the flexibility and the difficulty consist in defining the probability mass function. 
The fusion result is a discrete value or a label, which is determined by the corresponding 
maximum probability values. However, in some applications a continuous result is expected. In 
this paper, a scheme based on DS reasoning and locally weighted regression is proposed to fuse 
the data obtained from aircraft corrosion damage inspections. The proposed approach implements 
a pairwise regression that is optimized by the DS method when multiple inputs are involved. 
Experimental results on the fusion of conventional eddy current and pulsed eddy current data for 
the application of aircraft corrosion quantification are presented.  

 
Keywords: Dempster-Shafer theory, data fusion, corrosion quantification, local weighted 
regression, classification 
 

1. Introduction 

The Dempster-Shafer theory has been used to fuse the data from multiple sensing modalities in 
various applications. The uncertainty of the measurements is modeled with the probability mass 
function, which defines a value between zero and one (basic probability assignment) to indicate 
the degree of support for a proposition  [1]. In the framework provided by DS theory, the frame of 
discernment ( θ ) consists of θ2  singletons, which are based on θ  mutually exclusive and 
exhaustive propositions. In practical applications, such proposition  is expressed as a discrete 
value or pre-defined class number to describe certain condition or status. However, not all the 
applications fit into this framework. For example, the quantification of corrosion damage in 
aircraft lap joints employs a continuous value to represent the material loss. The material loss by 
layer serves as one of the corrosion metrics for structural integrity and life prediction analysis [3]. 
Usually, the quantifying procedure is implemented by using the calibration results represented by 
a calibration curve. Only the first-layer corrosion can be characterized with the calibration 
method. Meanwhile, the problem of superimposed corrosion between multiple layers can not be 
solved.  
The idea of fusing multiple nondestructive inspection (NDI) data is to characterize different 
corrosion with integrated features from multiple sources [4, 5]. The fusion operation should 
optimally map those features to the target outputs. In this paper, a locally weighted regression 
(LWR) is used with the DS approach to estimate the material loss in aircraft lap joints due to 
corrosion damage. In the proposed scheme, the NDI measurements are first discriminated with 
trained classifiers. The classification results are further combined based on the DS rule. Finally, 
the outputs are quantified with the LWR method for the thickness estimation. The result is 
compared with the "ground truth" data from the teardown inspection of a naturally corroded 
specimen from a service-retired aircraft. The feasibility of the proposed approach is demonstrated 
in this paper.  
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2. The approach 

2.1 The general data fusion procedure 

The flowchart in Figure 1 depicts the procedure of the data fusion scheme. The estimation is 
carried out based on the previous available knowledge or data, which is named as the training 
data. The optimal number of clusters for the training data is found by using fuzzy k-means 
clustering and cluster validation indexes [6, 7]. Proper classifiers are assigned to the eddy current 
(ET) and pulsed eddy current (P-ET) data based on the cross-validation test results. The labelled 
training data is used to train the specific classifiers for ET and P-ET inputs respectively. The 
classified results determine the "data class" while the labelled X-ray data set defines the 
"information class". The probability mass function is defined based on the relation between these 
two classes.  
 
 

Pre-selected
 cluster number

Define probability
mass function (ET)

Define probability
mass function (P-ET)

Training

Estimating

l

l

 
Figure 1. The data fusion procedure. 

 
When a prediction is carried out on a new NDI measurement, the trained classifiers are applied to 
assign the input a pre-defined data class number. The probability mass value is derived from the 
probability model established during the training process. The DS combination rule fuses the 
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probability values and a decision is made on the maximum mass output. The regression is 
implemented with only the corresponding data points defined by this information class. Therefore, 
a continuous estimation result together with a belief value can be achieved. 

2.2 Definition of probability mass function 

Assuming that iC ( Ni ,...,2,1= ) represents the information class (corrosion types) and xv  is the 
vector of the measurement values, the mass value can be defined as the probability of being 
certain information class based on the  statistical information from available training data sets, i.e. 

( ) ( )xCpCm iis
v=   [8]. Herein, s indicates the different data sources ( Ss ,...,2,1= ). The input xv  is 

mapped to data class jd ( Mj ,...,2,1= ) by a classification operation. Thus, the basic probability 
assignment (BPA) is defined as: 

( ) ( ) ( )ijsjiis CdpdCpCm =                                                                                      (1) 
The second value ( )ijs Cdp  is regarded as a measurement of the capability of each data source 
for discriminating the information classes. According to DS theory, the BPA values must be 
normalized to meet the requirement ( ) 1=∑i is Cm  before the updating operation is applied.  

2.3 Locally weighted regression 

The local regression is estimating the value using information pertaining only to a neighborhood 
of the input query  [9]. Supposing that the variable Ry∈ represents the material thickness and the 
NDI measurement vector is mRx ∈v , we need to find the mapping function RRf m →: . That is: 
  ( ) ppp xfy ε+= v  ( np ,...,2,1= )                                                                               (2) 
Herein pε is a random variable. Given a query point qxv , to obtain the regression applicable to this 
query point, the following cost function is minimized: 
 

    (3) 
 
where, ( )⋅K  is a weight function and h is the bandwidth. X  is matrix of data samples with  [ ]Tpx 1,v  
in the pth row and [ ]Tnyyy ,,, 21 L=y . The solution to the above cost function is  [9]:  
 

(4) 
where WXZ =  and Wyv = . W is a diagonal matrix with the ith diagonal element ( )hxxKw qpii

vv ,= . 
The estimation at qxv is then given by : ( ) pp xxy vv β̂ˆ = . 

3. Experimental results 

Data sets from the inspection of a service-retired Boeing 727 aircraft are used in the experiment. 
A two-layer lap joint cut out from below the cargo floor was inspected by the multi-frequency 
eddy current testing at 5.5kHz, 8kHz, 17kHz, and 30kHz frequencies and the pulsed eddy current 
testing. The P-ET lift-off-intersection (LOI) scan is extracted and used for analysis [11]. The 
ground truth data is obtained by using digital X-ray mapping technique on each layer. Data from 
two sections are used for training and testing respectively. The ET data obtained at 17kHz and 
30kHz together with P-ET LOI are used for the first layer thickness estimation.  
The ET and P-ET data are clustered by applying the fuzzy k-means clustering algorithm. The 
initial cluster number is set from 2 to 14. The clustering partition index, separation index, Xie and 
Beni's index, and Dunn' s index are considered to select a proper cluster number for NDI data. 
Consequently, ET and P-ET data are clustered into 7 and 8 groups. Therefore, the X-ray data is 
segmented into seven parts based on the percentage of material loss. The clustered/labelled NDI 
data is used to train classifiers. To find an efficient classifier, the cross-validation test is applied to 
several candidate classifiers. The one with the smallest error is selected. In the experiment, the 
nearest mean classifier is employed for classifying ET and P-ET data. According to 2.2, the 
probability functions are defined for ET and P-ET data respectively as shown in Figure 2.  
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(a)                                                                        (b) 

Figure 2. Probability model of NDI data: (a) pulsed eddy current and (b) eddy current (17kHz and 
30kHz).  
 
 
 
 

 
(a)                                                                        (b) 

Figure 3. The classification results of (a) eddy current (17kHz and 30kHz) and (b) pulsed eddy 
current LOI scan.  
 
 
 
 
 

(a)                                                                        (b) 

Figure 4. (a) The segmentation of X-ray thickness map and (b) the fused result of Figure 2(a) and (b).  
The classification results are from ET scan (17kHz and 30kHz) and P-ET LOI scan are shown in 
Figure 3 (a) and (b), respectively. Figure 4 (a) shows the segmented X-ray thickness map. The 
corresponding definition of the classes is given in Table 1. The fused result of Figure 3 (a) and (b) 
is presented in Figure 4 (b) after a morphological processing. The X-ray thickness map and the 
regression result can be found in Figure 5 (a) and (b), respectively.  
 

 
 
 
 

(a)                                                                        (b) 

Figure 5. (a) The X-ray thickness map and (b) the estimated result obtained by DS fusion and LWR.  
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Table 1. The definition of information classes in term of material loss (corrosion type).  
Corrosion 

class 
C1 C2 C3 C4 C5 C6 C7 

Thickness 
range (inch) 

0.024 – 0.027 0.027 – 0.030 0.030 – 0.033 0.033 – 0.036 0.036 – 0.039 0.039 – 0.042 0.042 – 0.045 

Table 2. The evaluation of the fusion result.  

 RMSE (E-3) CORR PSNR DE MI 
ET 17kHz 1.4585 0.9992 15.0381 1.0021 0.7150 
ET 30kHz 1.5017 0.9991 15.0475 0.9657 0.7157 
P-ET LOI 2.4106 0.9977 16.4591 0.6286 0.8170 

Fusion result 0.8151 0.9997 36.0737 0.0673 0.7939 
 
The fusion result is compared with the X-ray thickness reference in terms of a number of image 
comparison metrics listed in Table 2, i.e. root mean square error (RMSE), cross-correlation 
(CORR), peak signal-to-noise ratio (PSNR), difference entropy (DE), and mutual information 
(MI)  [10]. The DS-based fusion followed by LWR process achieves the best result. The output of 
DS fusion as shown in Figure 6 can be used as an indication of the degree to which we can trust 
the result. 
 
 
 
 
 

Figure 6. The DS fusion output. 

4. Discussion 

The result obtained in this experiment for the first-layer thickness estimation is better than the 
results reported previously  [5]. The fusion algorithm developed here can also be applied to the 
deep-layer thickness estimation. However, the capability of P-ET technique for revealing and 
discriminating deeper layer corrosion has not been fully explored in this work. Only LOI scan, 
which is a single feature point in the time domain, is employed for the analysis. Another study 
indicates that the LOI is not fixed and changes with the presence of different corrosion damages 
 [11]. Therefore, using single LOI point scan might not be an optimal solution.  
In the proposed scheme, the classification error of the selected classifiers is not considered in the 
probability model. This value indicates how much we can rely on the results of a specific 
classifier and the probability of a measurement belongs to certain class. On one hand, an iterative 
classification scheme might be helpful to reduce the classification error; on the other hand, this 
error can be considered when the probability model is built. 
The classification-based approach as presented in  [12] provides a promising solution for 
identifying corrosion at different layers because it is a typical classification application. How to 
train a classifier efficiently with limited training data still remains an unsolved problem, but the 
classification-based approach may lead to further improvement when new data is available. 
Similarly, the proposed data fusion scheme also provides a mechanism for a possible 
improvement.   
The quantification analysis relies on artificially prepared "damages" on a calibration specimen. 
The calibration curve is determined by limited points. The performance of the proposed fusion 
algorithm can be further improved in two aspects: the accuracy of the classifier and the 
probability model. However, the performance does not increase with the accumulation of data 
because the quality of the data cannot be assured. The updating mechanisms for selecting good 
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data and improving the fusion analysis by using the accumulated historical data would therefore 
make for an interesting topic for future work.    

5. Summary 

In this paper, a data fusion scheme based on Dempster-Shafer theory and locally weighted 
regression is proposed. The measurement value is optimally classified by fusing the classification 
results with the DS combination mechanism. The final estimation is achieved by locally weighted 
regression of the pre-classified results. The data fusion method achieves a better estimation of lap 
joint thickness than the one obtained by calibration. For our future work, the use of multiple P-ET 
slices around LOI point is considered. The data fusion algorithm may be applied to these P-ET 
images for characterizing deep-level corrosion. This will also help to identify the contribution of 
the eddy current technique for the thickness estimation. Another way to improve the method is to 
develop a mechanism to select good data and update the model and classifiers for an improved 
estimation.   
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Abstract 
 

Two compression algorithms for the image sequences generated by pulsed-transient 
thermography for non-destructive testing were developed. The first algorithm allows to balance the 
quality of the original measurement data reproduction against the compression ratio. This algorithm 
comprises a dedicated space/time mapping (STM) method and an image compression algorithm 
(JPEG2000). The second algorithm provides lossless reproduction of the original measurement data. 
This algorithm is based on a particular transformation of dynamically changing data and a lossless 
compression algorithm (ZIP). Both algorithms were tested on typical experimental thermography data. 
In both cases, the achieved compression ratios were significantly higher than those of existing 
algorithms. 

  
Keywords: thermography; data compression; space/time mapping 
 
1. Introduction 
 

Pulsed thermography (PT) has experienced wide application during the recent years due to its 
unique features like: contact-free operation, capability to inspect large areas simultaneously and 
fastness of inspection. The technical equipment and method have now reached a stage of maturity 
which allows them to be used for in-line full-time quality control of components. This kind of testing 
allows for the detection of subsurface defects, inclusions and delaminations as well as for materials 
characterization [1]. The inspection usually consists of three phases: 

1) Thermal excitation 
2) Observation of the thermal response 
3) Data analysis 
The problem we discuss in this work concerns an efficient compression of the recorded IR 

image sequence as obtained after phase 2. On one hand, the reconstructed measurement data should 
match the original data with high accuracy, on the other hand excessive data storage volume as it 
might occur in 24-hours process control applications has to be avoided. 

As an introduction, the raw format in which the equipment stores information is briefly described. 
An IR camera that is used for PT may have a temperature range from -10 °C up to 100 °C. We use a 
focal-plane array mid-range IR camera (AIM). The IR signal is digitized with 14 bits accuracy (digital 
discretization). It is assumed that the camera array has an image size of 256 x 256 pixels and stores 
the data as words of 16 bits. According to these characteristics the size Sizeseq of the image sequence 
(comprising N images in raw format) is computed as: 
 bytesNSizeseq 2)256256( ⋅⋅⋅=  
 (for example, if N=200 then Sizeseq= 25 MB) 

Due to the signal characteristics of the image sequence, the raw data contain a significant 
amount of redundant information. As the thermal response of the inspected sample may be described 
as a diffusion process, some images after the flash occurred, the whole sequence will always change 
smoothly over time, i.e., the temperature of any chosen location will not change to significant amounts 
between adjacent frames. Based on this property, we propose two compression algorithms for pulsed 
thermography data. Note that, in general, there are two kinds of data compression: lossless 
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compression and compression with slight losses (the latter being frequently used for the storage of 
images as well as audio and video data). Both paths are pursued in this work.   
 
2. Raw measurement data format 
 

Prior to the description of the algorithms, the raw data format as provided by the PT equipment 
is considered. During the measurement the IR camera generates the sequence of S images, each 
image having the same size (MxN pixels), where each image pixel is represented by a word of 16 bits. 
The whole sequence is stored on a media device as a single file.  Further, in the paper we use the 
abbreviation IMraw(i,j,t) to address to the IR value in the point i,j ( Ni ≤≤1 , Mj ≤≤1 ) at the time t 
( St ≤≤1 ). 
 
3. Lossy data compression 
 
3.1 Time signal reconstruction (TSR) method 
 

To estimate the efficiency of the algorithm proposed in the following, its results will be compared 
with the results of the thermographic signal reconstruction (TSR) method [2, 3] which was especially 
developed for pulsed thermography. The TSR method serves as a reference for the algorithm proposed 
in the following. 
 
3.2 Space/time mapping JPEG-based data compression 
 

A unique aspect of the algorithm we propose is to combine spatial and temporal information in 
the cooling image sequences. The main idea lies in a transformation of the recorded data IMraw(i,j,t) into 
a single image STM to be further compressed [4]. The algorithm consists of three steps: 

1) Extraction of the dynamically changing part of the data 
2) Space/time mapping 
3) JPEG compression 
The first and second steps were developed and described in detail in our previous work [4]. The 

novelty in this work is an application of the common JPEG2000 algorithm [5] for compression of the 
image STM. This image compression algorithm was chosen for its high compression ratio, high 
reconstruction quality and high speed. The algorithm accepts the quality/size ratio as an input 
parameter for the compression procedure. The range of this parameter and its influence depends on 
the particular implementation of the algorithm. 

In our implementation of the algorithm we used the programming language LabVIEW to produce 
the image STM as a BMP file and the image processing package Corel PHOTO-PAINT to compress it. 
The package provides JPEG2000 compression as a function of exporting that requires an input 
parameter CMP in the range 1-100 for varying the quality/size ratio. The value 1 corresponds to high 
quality at low compression, and the value 100 corresponds to low quality at high compression. 

In section 3.3 we present the results of pulsed thermography data compression for several 
values of CMP. 
 
3.3 Compression results 
 

 In most the STM-JPEG algorithm compressed data tightly and provided high reproduction 
quality. In the following, results are presented of two example IR image sequences compressed with 
different values of CMP. The quality and file size are compared to those obtained by use of the TSR 
method. A parameter RL is used as a measure for reproduction loss estimation: 

∑∑=
M

j
ij

N

i
RMSE

MN
RL 1

,        (1) 

Proc. Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials
Québec City (Canada),2-4 Aug. 2005. © X. Maldague ed., É. du CAO (2006),  ISBN 2-9809199-0-X 



 21

where RMSEij is the root mean square error computed against the actual cooling curve at the point i,j of 
the image sequence: 

( )∑ −=
s

t
reprawij tjiIMtjiIM

S
RMSE 2),,(),,(1

 ,     (2) 

where IMrep(i,j,t) is a pixel with the coordinates i,j in the image number t of the decompressed image 
sequence. 
Remark: In order to suppress image noise which is inevitable under practical circumstances, a 3 x 3 
median filtering was applied to the measured data before storing them in raw format.   

In the first example, a polyvinylchloride (PVC) plate (thickness: 1 cm) containing two lengthy 
grooves simulation sub-surface defects (depths: 0.7 mm and 1 mm) was tested. Flash lamp heating 
was employed. The image sequence included 188 images with a size of 256 x 256 pixels. The data in 
the centre region of interest (128 x 128 pixels) were extracted and stored in raw format, which required 
5.9 MB of storage space. Further the data were compressed by TSR and the STM-JPEG algorithm and 
their reproduction estimated by Eq. (1). Table 1 shown below summarizes the result of compression at 
different values CMP of the JPEG compression. 

 
Table 1. Compression results on a PVC plate with buried grooves 

TSR STM-JPEG algorithm Factor method CMP=1 CMP=20 CMP=40 CMP=60 CMP=80
Size, KB 320 314 241 139 77 32 

Reproduction losses (RL) 5.95 2.79 3.14 3.84 4.55 5.50 
 
The STM-JPEG compressed file size can be one tenth of that of the TSR method, or to a total 

compression factor of 184 at CMP=80. At the same CMP, the reproduction losses are still at a lower 
level than for TSR. In a trade-off with file size, RL can be made significantly smaller. This may be 
helpful, if defect reconstruction algorithms will be applied on the IR data. 

In the second example, the object under test was a sample made from polyethylene which 
contained 4 circular defects of different diameters in different depth (diameter/depth: 3/1.2 mm, 5/1 mm, 
3/2 mm and 5/2 mm). The results are similar to that of the first example. Fig. 1(a) shows a 
thermographic image of the test specimen from the cooling sequence. The entire sequence contained 
98 images with a frame spacing of 0.35 s. 

 Again, the centre region of 128 x 128 pixels was extracted and stored in raw data format (3 
MB). The compression results are shown in Table 2.   

 
Table 2. Compression results on a polyethylene sample with flat bottom holes 

TSR STM-JPEG algorithm Factor method CMP=1 CMP=20 CMP=40 CMP=60 CMP=70
Size, KB 320 226 183 134 82 59 

Reproduction losses (RL) 5.02 2.49 2.81 3.29 4.03 4.55 
       

The reproduction losses are shown in Fig. 1(b,c) for the reference algorithm (TSR) and the 
STM-JPEG algorithm proposed here. The grey values represent the RMSEij as defined in Eq. (2). A 
perfect reconstruction would produce a black image. It is obvious that the proposed algorithm reduces 
the reproduction error significantly, in particular at the defect positions. 
 
4. Lossless data compression  
 
 The problem of lossless data compression has been widely discussed. The most famous 
algorithms developed for solving this problem and using nowadays are Huffman coding, LZW coding 
and arithmetic coding [6].  
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Fig. 1 (a) - Thermographic image (frame 40) from the cooling sequence. The four sub-surface defects 

are visible close to the corners (image size 37 mm x 37 mm). (b,c) Images of the reproduction loss 
obtained by both algorithms ((b) - TSR method, (c) - STM-JPEG compression at CMP=70), the grey 

values represent the RMSEij as defined in Eq. (2). 
 
These algorithms are based on different approaches but have in common that they exhibit a 
dependence of the compression ratio on the data to be compressed. A data block having a high 
number of repetitions can be compressed tighter than a data block having a low repetition number. In 
some cases the transformation of a source data block based on the information context allows to 
intentionally increase the number of repetitions and in consequence, to increase the compression ratio. 
Considering pulsed thermography data in the raw format one can note that there are few repetitions, so 
this does not allow to achieve  a high compression ratio using existing algorithms. As an approach to 
this problem, it is necessary to transform the data into a form suitable for compression. In this work we 
propose an algorithm that consists of a dynamically changing data transformation (DCDT) of 
measurement data and a compression package (ZIP) chosen as a widespread lossless compression 
package.  

To compress pulsed thermography data, the algorithm performs three steps: 
1) Transformation of dynamically changing data (DCDT) 

The algorithm separates dynamical and statical information, stores the data in the form 
suitable for compression. 

2) Lossless compression  
The transformed data is compressed by the ZIP algorithm. 

 
4.1 Transformation of dynamically changing data 
 

In this step the algorithm separates dynamical and statical information the data contains. As 
statical information, the average cooling process is considered. All image IR values IMraw(i,j,t) at 

St ≤≤1  decrease with more or less similar speed that is explained by a transient cooling process after 
thermal excitation. To separate the cooling process and dynamical changes (dc), the algorithm 
computes average image temperatures AV(t): 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
∑∑

MN

tjiIM
tAV i

raw
j

),,(
)( ,       (3) 

and subtracts the computed temperatures from source images: 
)(),,(),,( tAVtjiIMtjiIM rawdc −= .       (4) 
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The row AV(t) represents the average process of cooling while the values IMdc(i,j,t) describe the thermal 
dynamic changes caused by internal thermal reflections. Further the algorithm extracts dynamic 
changes of single image pixels (sip) computing the difference of pixel values between adjacent images: 

)1,,(),,(),,( +−=− tjiIMtjiIMtjiIM dcdcsipdc                                (5) 
Note that the difference IMdc-sip(i,j,t) is computed for all pixel values except the last image S. The 
performed computations significantly increase numbers of repetitions in the data IMdc-sip(i,j,t). If the 
probability histogram of IMdc-sip(i,j,t) is considered, the maximal probability will be close to 0 and rapidly 
decrease from 0 to ∞+  and from 0 to ∞− . In binary form it has a following feature that bits of low 
order contain most of changes while bits of high order almost always equal to zero. In order to 
effectively use this feature, the algorithm carries out a bit separation by bit order. Note, that we choose  
16-bits integer form to store values IMdc-sip(i,j,t) where the highest bit is used for a sign and 15 bits are 
used for the number coding. The algorithm forms 16 single data chains by the following equation:  

( )][),,()( nsipdcjit tjiIMnDC −⊥⊥=⊥   for n=0…15                  (6) 

where the abbreviation ][),,( nsipdc tjiIM −  denotes an extraction of  the n-th bit from the value 

),,( tjiIM sipdc−  and the abbreviation )(kak⊥  denotes a bit concatenation of elements a  in forward 
order: )...3(),2(),1( aaa  . This transformation is schematically shown in Fig 2. To store data chains, they 
are converted in the byte form. 

 
Fig. 2. Example of the formation of the data chain DC(2) 

  
After these steps have been done, the algorithm stores a data structure that includes the raw 

AV(t), the last image IMdc(i,j,S), and 16 data chains DC(n). For simplicity of description we assume that 
they are stored as single files to be compressed: a file av-t.raw for raw AV(t), a file im-dc-s.img for the 
last image IMdc(i,j,S), files dc-0.dat, dc-2.dat … dc-15.dat for data chains DC(n), a file descr.txt that  
stores supplemental information – the number of images, image resolution and etc. 
 
4.2 Lossless compression   
 
There are a lot of software packages we can use for file compression. ZIP, TAR, RAR, UHA are the 
most famous of them. They differ from each other in internal compression algorithms and their 
implementations. To compress data obtained in previous step of our algorithm, we choose to apply the 
package ZIP due to its popularity, availability and high speed. Note that indeed any lossless 
compression package can be used instead of ZIP.  The results of data compression are presented in 
Section 4.3. All obtained files av-t.raw, im-dc-s.img, descr.txt, dc-0.dat … dc-15.dat are compressed by 
the package ZIP to a single file. The decompression procedure is carried out in inverse order. 
 
4.3 Compression results 
 

The developed algorithm was also applied to pulsed thermography data measured by the 
testing system of Fraunhofer IZFP. The algorithm shows better compression ratio than pure ZIP 
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compression of the data in raw format. Table 3 summarizes the result of compression of two image 
sequences described in Section 3.3 (PVC plate with buried grooves (sample 1), polyethylene sample 
with flat bottom holes (sample 2)). As seen, the algorithm, namely the DCDT transformation, allows 
significantly to increase the compression ratio. 

 
Table 3. Compression results on PVC and polyethylene sample 

file size, MB Sample data in raw format (uncompressed) ZIP compression DCDT-ZIP compression 
Sample 1 5.88 3.15 1.55 
Sample 2 3.06 1.37 0.84 

 
 To complete the algorithm description, we note that the transformation DCDT should be 
adjusted to the compression package we apply. It concerns the last step (Eq. 6) when the data chains 
DC(n) are formed from IMdc-sip(i,j,t). Our tests have shown that, if ZIP is used, the transformation (Eq. 6) 
is useful, as it increases the compression ratio. But some packages (e. g. RAR in maximal compression 
mode) compress the data IMdc-sip(i,j,t) and DC(n) with almost the same ratios. So, the transformation 
(Eq. 6) can be skipped. Nevertheless, we emphasize that the DCDT transformation in the form we 
described is the most suitable and universal for any data or text compressor.   
 
5. Conclusions and future work 
 
 In the present work, the new lossy and lossless compression algorithms for pulsed 
thermography data were proposed. The STM-JPEG algorithm combines a priori knowledge of the 
diffusion phenomena, the specific space/time representation of dynamically changing data and a well 
established static image compression algorithm. This combination achieves a high compression ratio 
while preserving high reconstruction quality. The DCDT-ZIP algorithm involves the specific 
transformation of dynamically changing data and a well established lossless data compression 
algorithm. The developed algorithms have demonstrated good results when applied to various 
experimental data sets measured by flash thermography. 

Concerning further improvements, one can suggest for the STM-JPEG algorithm using 16-bit 
grey scale JPEG2000 compression. It will allow to preserve initial camera sensitivity (avoiding 256-level 
discretization) while forming the STM image. 
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Abstract 

The automated analysis of the images is of great importance today in many applications. In ultrasonic 
nondestructive evaluation of materials, the B- and C-scanning generates two-dimensional images which often require 
automated interpretation. Such images are often noisy and low-contrast. They are formed by combination of multiple 
ultrasonic waveforms obtained at different moments of investigation process or at different locations of the object of 
interest. The straight line segments are often formed on such images as a reflection of some physical phenomena taking 
place in the material. Such lines can sometimes be considered as the elements of more complex patterns when some a 
priory knowledge allows one to break the pattern into logical sub-elements. The suggested technique provides the way to 
recognize very low-contrast line segments on acoustical and other images when signal to noise ratio (SNR) is 1 and 
lower. At such SNR, the separation of real line from the noise artefacts becomes a challenging problem. The proposed 
technique provides the way of dealing with such problems by obtaining redundant amount of data from the area of 
interest using Radon transformation as the key part of the procedure. 
 
Keywords: Radon transform, two-dimensional filter. 
 
1. Introduction 

Many two-dimensional images generated with ultrasonic and other testing techniques, images of the 
cities from the air etc. contain straight line pieces, or segments. On the airborne photos they represent the 
roads, channels and other artificial objects. On the images generated by the material testing equipment such 
lines could represent the physical processes or interfaces between contacting surfaces. As long as today’s 
technology allows one to create an enormous amount of data related to the problem of interest, it is often 
impossible for a human to process it in the required time intervals. In many cases the interpretation of the 
image needs to be done within milliseconds after the image is acquired and a decision is to be made regarding 
the further actions. The processes need to be automated to deal with such situations. Today, in many 
applications, the computers are set up to automatically recognize the pattern on the image, interpret it and 
sometimes based on the interpretation to make an appropriate decision. 

In many cases the straight line elements of possibly more complex patterns need to be extracted from 
the image to provide a physical, geometric or other interpretation of the image data. Often, such lines are 
hidden in the noise, overlap with other image elements. For example, Figure 1 presents a sub-image of the 
bigger image acquired during ultrasonic real-time testing of the resistance spot weld growth. The straight 
segment indicated with the arrow reflects the dynamics of the spot weld development and is a very important 
feature in the nugget quality characterization. The image is composed of multiple waveforms obtained during 
testing which lasts only tens of milliseconds [1, 2]. The intensity of the line is much lower than that of the 
other image elements which reduces the possibility to detect the line. Still, such straight lines possess the 
power the other picture elements do not have: these are the ordered structures. For such lines the Radon 
transform could be applied to detect their presence even when the SNR is very low. The original image can 
be pre-processed before doing the analysis but often the unwanted picture elements can not be removed 
completely. In noisy images the processing of the Radon transform itself is often required to have the 
opportunity to automatically detect the presence of the line of interest. 
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Figure 1. Example of the image with the straight line (left). The picture is the acoustical B-scan representing 
the dynamics of resistance spot weld growth. Every vertical line of the image is a separate oscillogram 
(right). 

 
2. How the Radon Transform Works 

If the image is gradually rotated around its center and projected on the fixed line, one will get a set of 
projections at different angles. The projections can be put together one after another to form a two-
dimensional picture. On the x-axis there will be the degree of rotation, on the y-axis is the projection 
corresponding to that angle. Erreur ! Source du renvoi introuvable. shows the square with a straight line at 
22 degrees with respect to the negative y-axis. Numerically, the black background of the image is composed 
of zeros and the line is composed of ones. Gradual rotation of this image clockwise around its center from 0 
to 90 degrees and projection on the horizontal axis generates a Radon transform (RT) picture shown at 
Erreur ! Source du renvoi introuvable.. This transform shows a maximum at 22 degrees. Vertical axis is 
the projection whose length is 2  longer than the side of the square. The position of the maximum in Radon 
transform allows one to find the direction of the line (angle) in the image. Position at the projection axis (y-
axis) defines the distance D of the line from the center of the image, see Erreur ! Source du renvoi 
introuvable.. Projection of the image on the horizontal line (plane of projection) in this figure creates one 
vertical line of data of the RT of Erreur ! Source du renvoi introuvable.. When image is rotated by angleβ  
the transform will have a maximum corresponding to the strongest projection of the image line. Thus, the 
Radon transform can provide enough information to draw a line through the image along the discovered line. 
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Figure 2. A 100x100 square 
with straight line at 22 
degrees with respect to the -
y-axis. 
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Figure 3. Radon transform of the 
image with projection peak at 22 
degrees. 
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Figure 4. Image rotated by angle β . 
 

The choice of the square (or rectangular) image is not the best one as long as the RT of the square is by 
its nature an uneven image, see Figure 5. Figure 6 shows the transform of the same square but with the line 
going through the square. In this case the original image is the same as in the Erreur ! Source du renvoi 
introuvable., while numerically, the background is composed of ones and the line is composed of twos. On 
the Figure 6 the arrow shows the local maximum corresponding to the location of the line. But the center of 
the Radon image could be brighter as long as projection along the diagonal of the square (at 45 degrees) can 
easily exceed the amplitude of the line projection. The automatic peak (or maximum) detection could grab the 
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center of the image instead of the peak pointed with the arrow (the one we need to detect). To fight it the 
image can be made circular to have even amplitudes at any rotation angle, Figure 7, 8. 
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Figure 5. Radon transform of the even square of size 
100x100. 
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Figure 6. Radon transform of the even square with 
the straight line segment. 
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Figure 7. Line in the circular image. 
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Figure 8. Radon transform of the circular image with 
the peak corresponding to the straight line at 22 
degrees. 

 
3. Transforms of the Noisy Images 

The pictures shown in the previous section can be considered as examples for RT demonstration and 
present mostly academic interest. Such clear pictures with only a single straight element rarely happen in 
practice. In many practical applications, noises are an inalienable part of the image. In real images the signal 
to noise ratio could be of the order of 0.1-0.01. The lines of interest can be hidden in the more powerful 
signals. On Figure 9 one can see the circle with background modulated by sine function and a straight line of 
0.2 of the sine amplitude. The corresponding RT is shown in Figure 10. In this case the picture becomes 
much more complicated for automatic analysis. There are a lot of local maxima, and their positions are 
unpredictable. If the amplitude of the line or its length slightly decreases the RT line peak will be below other 
local maxima. Its positioning will become an unreliable procedure.  
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Figure 9. Circular image modulated by sine 
function and a line of 0.2 of the sine amplitude. 
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Figure 10. Radon transform of the image. 

 
One of the possible solutions is filtering the RT image [3]. In many cases the peak of interest is smaller 

than other peaks and a 2-D high-pass filtering could be applied for the RT image. The choice of specific 
cutoff frequency is up to the application. For the given ultrasonic scans the following 2-D Remez filter was 
applied: order - 30; frequency response - [0 0.4 0.6 1] of Nyquist frequency corresponds to the amplitudes [0 
0 1 1]. This is the high-pass filter with cutoff at 0.5 of the Nyquist frequency and the slope going from 0.4 Hz 
with zero response up to 0.6 Hz with unity response, see Figure 11. The result of filtering is shown at Figure 
12. For comparison one can draw a vertical section of the RT image at 22 degrees – through the maximum. 
The upper plot of the Figure 13 shows the vertical image profile of the Figure 10 at 22 degrees; the lower plot 
is the vertical profile of the filtered image of the Figure 12. The arrows point at the peak of interest.  

 
Figure 11. High-pass 2-D filter with 0.5 Nyquist 
cutoff frequency.  
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Figure 12. RT image filtered with high-pass filter. 
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Figure 13. The vertical sections of the RT images at 
22 degrees before (upper) and after (lower) filtering.  
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Figure 14. Circular image modulated by sine function 
and a line of 0.02 of the sine amplitude. 

 
When the amplitude of the straight line is of the order of 1-5% of the noise amplitude, some additional 

processing is required for automatic location of the peaks. The image on the  
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Figure 14 has the line of 2% amplitude running the same way as in the previous, 20%, example. It can 
hardly be seen on the image. Still, the RT processing is capable to detect the line. On Figure 16 one can see 
the original RT image; the peak is too weak to be visualized. Figure 16 shows the results after the high-pass 
filtering .Now some weak “bump” can be recognized, and it is pointed to by the arrow. Still, the lines going 
approximately at 45 and -45 degrees are too strong. Such lines can be relatively easily removed using another 
2-D filter with selective directional effect. Its action is aimed at removing the lines going approximately at +-
45 degrees. The filter is shown at Erreur ! Source du renvoi introuvable., and the result of its action on the 
previously filtered RT image is at the Erreur ! Source du renvoi introuvable.. The arrow points to the 
preserved and still detectable peak determining the location and orientation of the line segment on the 
original ultrasonic image. Erreur ! Source du renvoi introuvable. demonstrates the vertical profiles of the 
initial RT image, high-pass filtered and then selectively filtered ones - upper, middle and lower plots 
correspondingly. Even for the 2% amplitude the line can be successfully detected. Erreur ! Source du 
renvoi introuvable. shows the vertical sections of the RT images: original, high-pass filtered and diagonally 
filtered. The peak can be easily localized after the second filtering. 
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Figure 15. The unprocessed RT of the image with 
2% intensity line. 
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Figure 16. RT of the image with 2% line filtered with 
high-pass filter. 

 

 
Figure 17. 3-D view of the 
second filter removing the 
near-diagonally oriented 
lines; small image in the 
right upper corner is a 2-D 
view of the same filter. 
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Figure 18. Results of the second 
filtering. Diagonal lines are removed 
while the useful information is 
preserved. 
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Figure 19. Image profiles of the 
original RT image (upper), 
high-pass filtered (middle) and 
diagonally filtered (lower) at 22 
degrees.  Arrow point at the 
place where the peak is located. 
 

 
 

Also, studies have been made for the completely random images with line going the same way 
through the circular image. If the amplitude of the line is close to the random noise amplitude, the RT 
picture readily shows the location of the line, see Figure 20, 21. Here the line also goes at 22 degrees 
through the circle of random numbers and it can be seen easily. The RT picture also shows well defined 
spike indicated with the arrow. The situation is much worse when the line amplitude is 2-3 times lower than 
this. On Figure 22 one can barely see the presence of the line segment. The RT image of this circle is 
presented at Figure 24 and the global maximum is indicated by the arrow. This maximum will falsely define 
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the line position leading to erroneous interpretation of the original image. Looking at a pure RT image of 
the straight line (Erreur ! Source du renvoi introuvable.) one can see that the spike defining the line 
position is stretched horizontally. One could employ this fact to remove the noise in RT image in the 
horizontal direction using horizontal low-pass filter. The filter used to process the obtained RT image is 
shown at Figure 23. It removes high frequencies along the horizontal direction. In this case the global 
maximum is positioned at the right place defining the true position of the line in the image (Figure 25). 
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Figure 20. Line going through the circle of 
random numbers of amplitude in the range -
0.5..+0.5. Line amplitude 0.5. 
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Figure 21. RT of the random image with line amplitude 
0.5. 
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Figure 22. Line going through the circle of random 
numbers of amplitude in the range -0.5..+0.5. Line 
amplitude 0.2. 

 
Figure 23. Horizontal low-pass filter. 
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Figure 24. Original RT image with maximum in the 
“wrong” place.  
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Figure 25. Horizontally filtered RT image reveals the 
true position of the line.  

 
 
4. Conclusions 
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The automatic recognition of the patterns in the noisy images is a challenging task requiring a lot of 
efforts from the software developer. In cases when the patterns contain straight segments and their 
approximate position and/or orientation can be predicted, the Radon transform can significantly help define 
their position and orientation on the image. Preprocessing of the original image is the first thing which needs 
to be done before recognition process. Still, processing of the RT images is often required to be able to 
correctly localize the position of the lines of interest. In many cases the search of the peaks on the RT images 
do not need to be done in the range of 0..90 degrees. If the orientation of the line is approximately known the 
search can be run in the lower range of angles, thus looking for the local maximum instead of the global one. 
This also increases robustness of the technique eliminating the possibility to falsely grab some maximum due 
to the side effects of filtering on the edges of the RT image. 

The choice of the filters for the RT images is defined by the nature of the image. In some cases the 
filtering is not required at all. But when the SNR is low, the RT image processing becomes a necessary task 
for developing robust techniques for line detection. 
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Abstract 
 
The automatic detection of subsurface defects has become one desired goal in the 
application of Non Destructive Techniques. A new algorithm based on the Hough 
Transform, is proposed to reduce human intervention to a minimum by Pulsed 
Thermographic. The final result provided by this algorithm is an image showing the 
different defects without having attended to parameters so determinant in other 
algorithms as the delayed time of the first image or any subjective point of view in the 
analysis.  
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Introduction 
In recent years, Infrared Thermography (IT) has been extensively used in the Non 
Destructive Evaluation and Testing (NDT&E) scene. Although various methods have 
been developed around the world to improve and widen the use of IT1, the human 
intervention is still necessary to interpret the thermographic sequences. Some previous 
works have given good results making the analysis of such sequences as independent as 
possible on the operator’s point of view2,3. It is obvious that a priori knowledge of the 
specimen is fundamental most of the time. Nevertheless, in occasions it is sufficient to 
know whether the thermal decaying profiles at the surface can be modeled as a 1-D 
semi-infinite homogeneous sample or not. This fact helps to the analysis because the 
transient heat flow into the body can be quite well approximated by a simplification of 
the three-dimensional differential equation called Fourier diffusion equation4. This 
simplification characterizes the heat conduction in the body as a function, which relates 
linearly the logarithm of the temperature increase with the logarithm of the time that the 
process takes5. 
Let us consider the inspection of a semi-infinite homogeneous specimen under Pulsed 
Thermography (PT). The heat transfer at the surface follows a linear decay in a 
logarithmic space, approximating a -0.5 slope during all the inspection time for a non-
defective or sound area, Sa. On the contrary, thermal decay for a defective area diverges 
from this behavior. In Figure 1, it is shown the different temporal histories for pixels 
belonging to defective and non-defective areas.  
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Figure 1. a) Image extracted from the sequence inspected of a 4 mm-thick PlexiglasTM plate which 
contains 6 10 mm-diameter flat-bottom circular-shaped holes (localized at depths: 1, 1.5, 2, 2.5, 3, 
3.5 mm). b) Temporal evolution of contrast temperature for the selected points in a).  
 
The analysis of a thermographic sequence for the detection of subsurface defects can be 
reduced to the identification of the -0.5 slope in the surface temperature decay for each 
pixel within the image. Using traditional techniques, which come from the field of 
computer vision6, an algorithm can be developed in order to look for the -0.5 slope in 
the temporal temperature decay profiles of each pixel. Next sections resume the features 
of a new algorithm based on Hough Transform, which has been implemented to help in 
the analysis of thermographic sequences. Results for a PlexiglasTM specimen are also 
presented showing the independence on the subjectivity added by different operator’s 
point of view. 
 
Hough Transform in PPT 
The Hough Transform (HT) is a standard tool in image analysis that allows recognition 
of patterns in an image space. Basically, this technique finds curves that can be 
parameterized like straight lines, polynomials, circles, etc., in a suitable parameter 
space7. The HT uses the parametric representation of a line:  

 
eq. 1 
 

A pixel at coordinates (x,y) is transformed into the parameter space (ρ,θ)  where the 
variable ρ is the distance from the origin to the line along a vector perpendicular to the 
line and θ is the angle between the x-axis and this vector. The HT generates a parameter 
space matrix whose rows and columns correspond to ρ and θ values respectively. Each 
point (xi,yj), with i,j=1,…,N , is transformed into sinusoidal curves in the (ρ,θ) plane, as 

θθρ sincos ⋅+⋅= yx   
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those shown in Figure 2. The intersection of all those curves shows the existence of a 
line in the image. 

 
Figure 2. Parameter space (ρ,θ) for a) a free-defect area pixel b) defective area pixel. Curves are 
similar in both graphs but the curves spread more in the region 0.6<θ<0.7 for the graph b) because 
there are more points that do not belong to the same line. 
 
However, assuming a semi-infinite homogeneous material, the goal is not to identify a 
line in the temporal profile of each pixel, which could be considered as a fitting or 
regression of data. The goal is to know if that pixel belongs to a defective or a non-
defective area. Therefore, locating the number of points than follows a -0.5 slope makes 
the discrimination. From eq. 1, it can be deduced that the information resides in the 
column θ≈1.1071 rad.  
If all the points in the temporal history agree with a line of -0.5 slope, what should be 
seen in the Hough space is that all the curves intersect in only a point at the column 
θ≈1.1071 rad. The coordinate ρ for that point will be the offset of the line. Otherwise, 
there are as many points in the column as lines with different offsets but the same -0.5 
slope in the temporal history. Therefore, analyzing the distribution of the matches in 
that column selected above, it is possible to know if the pixel belongs to a non-defective 
area (sharp distribution) or if it belongs to a defective area (broad distribution, broader 
for deeper defects), as is shown in Figure 3. 
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Figure 3. Histograms of values in column θ≈1.1071 rad for those pixels selected in Figure 1. In each 
graph the parameters of the fitting fit(x) = a*exp(-((x-b)/c)^2) are given. 
 
Once the HT is applied to each pixel-temperature temporal history, the algorithm 
evaluates the obtained histograms and divides the pixels depending on the existence or 
not of the defects. In case that a defect is presented, the depth can be also estimated. 
Next section contains some of the results obtained using the algorithm together with a 
discussion about its benefits. 
 
Experimental results 
A 4 mm-thick PlexiglasTM plate of dimensions 15x15 cm was stimulated during 15 ms 
using two photographic flashes (Balcar FX60). The sample contains 6 10 mm-diameter 
flat-bottom circular holes localized at different depths (1, 1.5, 2, 2.5, 3, 3.5 mm), see 
Figure 1. 200 thermograms (from t=0.1 to t=20 s) were recorded after the heating pulse 
using a Santa Barbara focal plane infrared camera, model SBF125. 
Processing of the sequence with the Pulse Thermography Hough Transform Algorithm 
(PTHTa) it is possible to get results that agree with those obtained through other 
methodologies shown in Figure 4.  
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Figure 4. A comparative among different methods of analysis of thermographic sequences is shown. 
Best contrast images for: a) PTHTa algorithm, here presented b) IDAC algorithm3 c) DAC method5 
d) First and second derivatives8.  
 
Although this algorithm is computationally expensive, it provides better-quality contrast 
images than other algorithms such as IDAC algorithm3, DAC method5 or the first and 
second derivatives8. For example, the deepest defect is visible by PTHTa while this is 
not possible by the IDAC method (previous automated algorithm presented by the 
authors3). Diffusion is higher at the defects’ edges of the as can be seen in the Figure 4, 
but not as high as the diffusion levels observed with the derivatives method. 
Furthermore, computing the two-dimensional correlation coefficient between the 
obtained contrast images, values of 0.93 are achieved. The information according to 
depth is maintained and also the color scale presents a good correlation with depth as 
can be seen in Figure 5.  

 
Figure 5. The normalized value of the color scale for each defect on the graphs within Figure 4 is 
printed versus the depth of the defect. The new PTHT algorithm herein presented shows the best 
linear behaviour. 
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PTHTa makes possible the elimination of errors due to different operator’s point of 
views and so, represents better capabilities in the assessment of specimens. Besides, the 
selection of a sound area, necessary in most thermographic post processing techniques, 
is eluded due to be based in a 1-D model. This situation also helps to reduce non-
uniformities dues to the heating source, a common problem in active thermography. The 
influence of the initial time of acquisition, which is a source of incertitude to the 
measurement and a high non linearity in the log representation of the temporal decay, 
also is avoided thanks to the fact that dispersed data are not so representative in an 
algorithm based on occurrences. Therefore, an algorithm absolutely free of human 
decisions is herein presented. 
 
Conclusions 
A new algorithm based on the Hough Transform is proposed for the analysis of Pulsed 
Thermographic sequences. The Pulsed Thermography Hough Transform algorithm 
(PTHTa) provides contrast images free of subjectivity associated with human 
intervention and avoids the necessity of defining a sound area and establishing the 
initial time of acquisition. Besides, all the information is contained in just one image 
and leading to a quantitative estimation of the defect depths. Specimens under 
inspection should be semi-infinite homogeneous samples because this algorithm is 
supported on a 1-D Fourier diffusion equation approximation. Experimental works 
using a PlexiglasTM specimen were realized showing a good agreement with other semi-
automated techniques.  
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