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Abstract 

A typical problem in Thermal Nondestructive Testing/Evaluation (TNDT/E) is that of unsupervised feature 
extraction from the experimental data. Matrix factorization methods (MFMs) are mathematical techniques well 
suited for this task. In this paper we present the application of three MFMs: Principal Component Analysis (PCA), 
Non-negative Matrix Factorization (NMF), and Archetypal Analysis (AA). To better understand the peculiarities of 
each method the results are first compared on simulated data. It will be shown that the shape of the data set 
strongly affects the performance. A good understanding of the actual shape of the thermal NDT data is required to 
properly choose the most suitable MFM, as it is shown in the application to experimental data. 

Keywords: Thermal NDT/E, principal component analysis, non-negative matrix factorization, archetypal 
analysis. 

1. Introduction 

The basic matrix factorization problem is to represent a given matrix X∈ℜmxn as the product (X=AB) of 
two matrices A∈ℜmxp and B∈ℜpxn (the factors), where p is a size parameter to be properly chosen. As 
MFMs operate on bi-dimensional (2D) matrices and the typical output of a dynamic thermal test is 
generally an image sequence, that is inherently three-dimensional (3D), a pre-processing stage is 
needed. The thermogram sequence, representing the time evolution of a bi-dimensional temperature 
map, is converted into a 2D matrix X whose columns are the temporal profiles of each pixel, while rows 
are unrolled images. Hereafter, X will be considered as a set of temporal profiles and therefore the 
spatial coordinates will be neglected. The choice to privilege the temporal instead of the spatial data 
stems from the fact that information about the inner structure of the tested object is contained in the 
time evolution of the surface temperature. Given a factorization X=AB, the columns of A can be 
regarded as basis elements in the space of temporal profiles (i.e. as extracted features) while the rows 
of B are unrolled images representing reconstruction coefficients also called scores.  

Factorization problems do not always have an exact solution, they are therefore often posed as 
approximation problems. Given X one tries to find its best approximation X≈AB by minimizing in (A,B) a 
chosen criterion. For a matrix M∈ℜmxm its Frobenius norm is ||M||= (∑ij=1,m mij

2)½. The approximation 
criterion we consider is ||X-AB||. The representational properties of the factors depend upon the 
constraints imposed on A, B and p.  

In this paper, three approximate factorization methods, Principal Component Analysis (PCA), Non-
negative Matrix Factorization (NMF), and Archetypal Analysis (AA), are applied to a typical TNDT 
experiment. In this context the main goals are the detection of defects and subsequently the estimation 
of their geometrical properties, generally based on the analysis of thermal temporal profiles. A thermal 
test was carried out by exciting the surface of a plastic sample with a 6 kJ energy pulse delivered in 10 
ms. It is worth of mention that the use of a flash lamp as a heating source caused the surface 
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temperature distribution to be strongly uneven. The sample is a slab with 3 bottom holes located at 
depths 1.6 mm, 3.2 mm and 6.4 mm. The temperature decay of the heated surface was observed for 
100 s through an infrared camera working at a sampling rate of 1 Hz. A sequence of 100 images was 
acquired. The sequence was then converted into a matrix X∈ℜmxn with m=100 and n=4800. Fig. 1 
shows a raw thermogram 50 s after the flash (a), the mean temperature profiles of the four evidenced 
areas (b), and the normalized contrasts Cn (c). The performance of the three MFMs will be assessed by 
the degree of resemblance between the basis elements and the profiles shown in Fig. 1b and 1c.  

The paper is organized in three sections containing, for each of the three MFMs, a description of the 
basic concepts, two case studies on simulated data for graphical interpretation, and the application to 
experimental data described above. 
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Fig. 1: Raw thermogram (a), normalized mean temperature (in gray levels) vs. time (b), normalized 

contrast vs. time (c). 

2. Principal Component Analysis (PCA) 

The PCA is a quite old method, originated in 1901 by Pearson [1] and later developed by Hotelling [2]. 
The idea behind the PCA is to fit a low dimensional hyperplane to a scatter of data points in a higher 
dimensional space. Data reduction is achieved projecting orthogonally the original data onto the fitted 
hyperplane, thus lowering the number of coordinates needed to specify their positions. This method has 
been recently applied in the TNDT field [3,4,5]. 

2.1 Basic concepts 

We begin with some mathematical preliminaries. Let P≥0 be a positive semidefinite matrix in ℜmxm. It is 
a standard result in linear algebra that P can be represented as P = λ1u1u1

T + λ2u2u2
T + … + λmumum

T
 

where λ1≥λ2≥ … ≥λm are the (not necessarily distinct) eigenvalues and the columns u1,…,um the 
corresponding eigenvectors of P (i.e. Pui= λiui). The eigenvectors can always be chosen to be an 
orthonormal basis of ℜm. There are two useful optimality results which are worth mentioning. For any 
set of orthonormal vectors w1,…,wp it is ∑i=1,pwi

TPwi ≤ ∑i=1,pui
TPui = ∑i=1,p λi, and the maximum is attained 

at wi=ui. For any matrix Q of rank p it is ||P-Q|| ≥ (λ2
p+1 + λ2

p+2 +… + λ2
m)½ and the minimum is attained at 

Q = λ1u1u1
T + λ2u2u2

T + … + λpupup
T. 

Following Pearson’s original approach, let the n columns x1,…,xn of the matrix X∈ℜmxn represent n data 
points in ℜm. To identify a p dimensional hyperplane in ℜm one has to specify a point contained in the 
hyperplane and p orthonormal axes. The best fitting hyperplane is defined as that for which the sum of 
the squares of the perpendiculars from the data points to the hyperplane (let us call this quantity d) is 
minimized. It is easy to see that the best fitting hyperplane must contain the barycentre of the data 
points. Without loss of generality one can therefore center the data matrix subtracting from each 
column of X the barycentre of the data (the average column), thus obtaining a zero column-mean 
matrix X’. The problem now reduces to finding the p orthogonal axes. Define the dispersion matrix as 
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P=X’X’T. If w1,…,wp are p orthonormal vectors then d=∑i=1,pPii-∑i=1,pwi
TPwi. Minimizing d is equivalent to 

maximizing ∑i=1,pwi
TPwi which, by the first optimality result, is attained when wi=ui. Define Up∈ℜmxp as 

the matrix whose i-th column is ui and Λ as the diagonal matrix with i,i-th element λi. By the 
orthonormality Up

TUp=Ip, the p dimensional unit matrix. By the second optimality result it follows that the 
minimum of ||X’X’T–Q|| among all matrices Q of rank p is attained for Q=UpΛpUp

T. The best approximate 
factorization of X in Frobenius norm is therefore X=AB with A=Up and B=Up

TX. Observe that p controls 
the approximation level, when p=m the factorization is exact. 

2.2 PCA: example of application to 2D data set 

Let us consider two randomly generated data sets S1 and S2. The set S1 is obtained by combining two 
Gaussians with different variances and rotating them by an arbitrary angle. S2 is the superposition of S1 
and a similar distribution. The principal axes (Pa’s) of S1 (Fig. 2a) coincide with the main axes of the 
distribution. It is worth noting that the first Pa contains 94% of the total variance and therefore S1 can be 
considered one dimensional and well approximated by its projection onto Pa1. As for S2 (Fig. 2b), the 
Pa’s lack an intuitive interpretation. Moreover the eigenvalues (λ1=1.54, λ2=0.87) reveal that the 
information is almost evenly carried by the two Pa’s, making a one dimensional approximation 
unsuitable. 
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Fig. 2: Result of PCA applied to simulated Gaussian data. 

2.3 PCA applied to experimental data 

Fig. 3 shows the PCA results: the first six Pa’s (a, b), and the corresponding reconstruction coefficients 
(c-h). Comparing the curves in Fig. 3 with those in Fig. 1b and 1c, we note that although Pa1 and Pa3 
resemble contrasts and Pa2 a temperature profile, none of the four classes can be correctly identified. 
Furthermore, although the images evidence the defects, they exhibit negative basis elements and 
reconstruction coefficients. This is the major drawback of PCA in TNDT applications as the positivity 
constraint is inherent in the physical data.  
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Fig. 3: Principal axes (a, b) and the respective reconstruction coefficient images (c-h). 

This notwithstanding, PCA is a useful tool to extract features hidden in the raw data like the stripe 
pattern relative to Pa6 (Fig. 3b and 3h) explained by a malfunction of the synchronization device. 
Another important aspect concerns the shape of the data set. The eigenvalues show that the first 3 
Pa’s retain 95% of the total variance, therefore the data can be reduced by projection onto the first 3 
Pa’s, thus making possible a graphical representation in ℜ3. Fig. 8 shows the orthogonal projections of 
the reduced data on the coordinate planes. The circles show the locations of the profiles of Fig. 1b. The 
sound area (circle 1) belongs to a cloud, whose dispersion is due to the uneven temperature 
distribution. The defect centres (circles 2-4) are located at the end of tails departing from the main 
cloud. The tails correspond to edge effects due to lateral heat diffusion. Their lengths and directions are 
likely linked to the defect depths. This representation shows that the defects are not orthogonal to each 
other. This accounts for the difficulty in discriminating defects assigning a specific Pa to each of them. 

3. Non-negative Matrix Factorization (NMF) 

NMF overcomes the interpretative difficulty of the results of PCA by imposing non-negativity constraints 
on both A and B, thus providing positive basis elements (generally not orthogonal to each other) and 
allowing only additive combinations. The NMF method was made popular by Lee and Seung [6]. The 
NMF is clearly applicable in the context of TNDT/E by the inherent positivity of the temperature data. 

3.1 Basic concepts 

Exact NMF is a long standing problem in linear algebra. Given X∈ℜ+
mxn (i.e. element wise positive) and 

1≤p≤min{m,n}, find a pair of matrices A∈ℜ+
mxp and B∈ℜ+

pxn such that X=AB. Clearly p cannot be 
smaller than the rank of X, but in many cases even larger values of p do not guarantee the existence of 
an exact NMF. It is therefore of interest to consider the approximate NMF problem where, given X and 
p, one minimizes ||X-AB|| with respect to non-negative (A,B). The set of vectors Aw, where w varies 
freely in ℜ+

p can be interpreted geometrically as the polyhedral cone generated by the columns of A 
(generators of the cone). Geometrically the approximate NMF therefore consists in finding the p 
generators of the polyhedral cone in ℜ+

m (the p columns of A) and the n elements inside it (the n 
columns of AB) that best approximate the n columns of X. This optimal problem has always solution, 
but unlike the PCA the solution cannot be given in closed form. The main contribution of [6], is the 
development of an iterative algorithm which converges to local minima of ||X-AB||. 

3.2 NMF: example of application to 2D data set 

Let us now apply NMF to S1 and S2. Since the data sets are bi-dimensional, the exact NMF provides 
two vectors in the positive quadrant (N1,N2) that generate a cone containing the data points (Fig. 4). 
Notice that (N1,N2) is not unique, since, when the data are strictly positive (as in the case of 
temperature values), there are many local optima. When a cone generator is tangent to the data set, it 
represents a scaled version of the tangency point and therefore its physical meaning is clear. Another 
consideration that arises from observing Fig. 4 is the dependency of the NMF solution upon the 
orientation of the point cloud in the reference system. 
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(a) (b) 
Fig. 4: Result of NMF applied to simulated Gaussian data. 

3.3 NMF applied to experimental data 

NMF was applied to the experimental data with p=5. The basis elements and the score images are 
shown in Fig. 5. The resemblance of the basis elements to the profiles in Fig. 1b is improved with 
respect to PCA, however the four original classes are not separated. It is worth noting that in Fig. 5b the 
defects are barely visible while the uneven heating pattern appears clearly. Hence, N1 can be thought 
as the temperature trend common to all the pixels. Let us consider the shallowest defect, which seems 
the best spatially classified (Fig. 5e). In case of a correct classification, the temperature profile 2 (Fig. 
1b) should be a positive linear combination of only N1 (common thermal response) and N4 (contrast 
signal produced by the defect). Results show that the NMF reconstruction gives significant weight also 
to N2 (Fig. 5c). 
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Fig. 5:  Non-negative components (a) and the respective reconstruction coefficient images (b-f). 

4. Archetypal Analysis (AA) 

The AA, proposed by Cutler and Breiman in 1994 [8], approximates each point in the set (individual) as 
a convex combination of basis elements called archetypes. The archetypes are themselves convex 
combinations of the individuals in the data set. In the application to the TNDT/E field, the archetypes 
are pure temporal profiles. Depending on the shape of the data set, the archetypal profiles may 
correspond to some individuals thus affording an easier interpretation of their physical meaning. 

4.1 Basic concepts 

In archetypal analysis one uses as basis elements convex combinations of the columns of X. We 
remind the reader that the convex hull of two vectors is the segment joining them while given n vectors 
their convex hull is the smallest convex set containing all of them. Given a matrix X∈ℜmxn, the convex 
hull of its columns xi is the set of vectors w= Σi=1,nγixi where the γi≥0 vary under the constraint Σi=1,nγi=1. A 
matrix C∈ℜnxp is called column stochastic if it has columns with positive elements adding to 1. By the 
previous definitions it follows that if C is column stochastic the columns of XC are contained in the 
convex hull of the columns of X. The AA factorization problem can now be stated as follows: assigned a 
matrix X∈ℜmxn and an integer p find, in the convex hull of the columns of X, a set of p vectors (the 
columns of XC for a proper stochastic matrix C) whose convex combinations can optimally represent X 
in the Frobenius norm, i.e. minimize ||X - XCB||. The solution to the approximate AA factorization is 
therefore given by the pair (A,B)=(XC,B) of respective sizes nxp and pxm. The solution is computed by 

Proc. Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials
Québec City (Canada),2-4 Aug. 2005. © X. Maldague ed., É. du CAO (2006),  ISBN 2-9809199-0-X 



 8

solving a non linear least squares problem with convexity constraints. The relation between AA and 
NMF is shortly discussed in [7]. 

 

4.2 AA: example of application to 2D data set 

Results provided by AA applied to S1 (p=2) and S2 (p=3) are reported in Fig. 6. The main difference with 
respect to PCA and NMF is that the archetypes do not represent directions, rather they are points on 
the boundary of the convex hull of the data set. This allows a more straightforward interpretation of their 
physical meaning. As for the data reconstruction, all the points of S1 are projected onto the segment 
A1-A2 (Fig. 6a), the points of S2 (Fig. 6b) that are inside the triangle are exactly reconstructed while 
those laying outside are projected onto the closest edge. 
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Fig. 6: Result of AA applied to simulated Gaussian data. 

4.3 Applications to experimental data  

AA, like NMF, requires the preliminary choice of the number p of archetypes. Once again we chose 
p=5. Indeed, looking at Fig. 8, that represents a good view of the experimental data set, it seems 
plausible to expect that three archetypes could fall on the three defects 2,3 and 4, the other two 
archetypes should fall onto the extreme points of the cloud corresponding to the sound material.  
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Fig. 7:  Archetypes (a) and the respective reconstruction coefficient images (b-f). 

Results shown in Fig. 7 confirmed the expectations. Indeed, defects 2 and 3 are represented just by 
one archetype each (A2 and A3 respectively), 90% of defect 4 is described by A4 and the remaining 
10% by A1 and A5, that are the archetypes associated to the sound area. Fig. 8 is a graphic 
representation of the archetype locations where the dots are the data points, the circles the raw profiles 
1-4 (Fig. 1b) and the squares the archetypes A1-A5.  
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Fig. 8: Projections of the data set onto the three coordinate planes. 

5. Conclusions 

The performance of three MFMs have been tested and compared in a typical Thermal NDT application. 
Defect detection is well accomplished by all three methods. PCA proved to be effective in the extraction 
of hidden features but lacks physical meaning. NMF and AA, provide results easily interpretable in 
terms of thermal processes. AA seems superior to NMF as it extracts its basis elements directly from 
the data set. These preliminary results introduce a promising methodology to approach unsupervised 
data processing in TNDT. Further research on the peculiarity of each method is ongoing. 
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